

Chantry Avenue, Kempston, Bedford

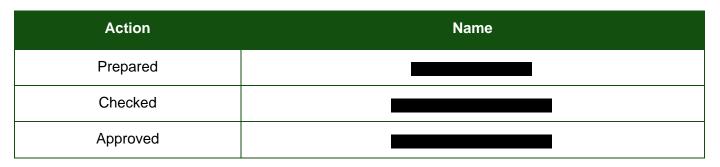
Flood Risk Assessment and Drainage Strategy

12/07/2022 Version 1.0 RAB: 2977_FRD

Disclaimer

This document has been prepared solely as a Flood Risk Assessment and Drainage strategy for Aragon Land and Planning Ltd. RAB Consultants accepts no responsibility or liability for any use that is made of this document other than by the client for the purposes for which it was originally commissioned and prepared. No person other than the client may copy (in whole or in part) use or rely on the contents of this document, without the prior written permission of the Managing Director of RAB Consultants Ltd. Any advice, opinions, or recommendations within this document should be read and relied upon only in the context of the whole document.

Published by


RAB Consultants Limited Second Floor Cathedral House Beacon Street Lichfield Staffordshire WS13 7AA

Call: 0330 2236475 Email: enquiries@rabconsultants.co.uk Visit: rabconsultants.co.uk

By viewing and saving this document digitally instead of printing it, you could save 4.6g of carbon emissions from double-sided printing on primary-sourced or 3.7g from 100% recycled A4 paper. Please only print this document if it is necessary.

Quality Control

Revision History

Version	Date	Amendments	Issued to
1.0	12/07/2022		

Contents

1.0	INTRODUCTION	.4
2.0	SITE DETAILS	.5
2.1	Site location	5
2.2	Site description	5
2.3	Development proposal	5
3.0	FLOOD RISK	.6
3.1	Sequential test	6
3.2	Flooding history	7
3.3	Fluvial (Rivers)	7
3.4	Flood defence breach or overtopping	7
3.5	Coastal/tidal	7
3.6	Pluvial (Surface water)	7
3.7	Artificial water bodies	10
3.8	Groundwater	11
3.9	Sewers	11
4.0	MITIGATION MEASURES	11
4.1	Risk to buildings	11
4.2	Risk to occupiers	12
4.3	Risk to others	12
5.0	DRAINAGE STRATEGY	13
5.1	Existing runoff condition	13
5.2	SuDS feasibility	14
5.3	Proposed discharge	15
5.4	Proposed surface water management	16
5.5	Future resilience	18
5.6	Amenity and biodiversity	19
6.0	MAINTENANCE AND MANAGEMENT PLAN	19
6.1	SuDS features checklist	19
6.2	Sustainable Drainage Maintenance Specification	20
7.0	CONCLUSION	24
8.0	RECOMMENDATIONS	24
APPE	NDIX A – DEVELOPMENT PROPOSALS	26
APPE	NDIX B – DRAINAGE	27

1.0 Introduction

RAB Consultants has prepared this Flood Risk Assessment (FRA) & Drainage Strategy (DS) in support of the proposed residential development located at Chantry Avenue, Kempston, Bedford.

The development site is located in Flood Zone 1 according to the Environment Agency's Flood Map for Planning (Rivers and Sea). A Flood Risk Assessment for this site is required under the Planning Practice Guidance for the National Planning Policy Framework (NPPF). The site-specific FRA is required to ensure that the development is safe from flooding and will not increase the risk of flooding elsewhere.

The Secretary of State for Communities and Local Government laid a Written Ministerial Statement in the House of Commons on 18th December 2014 setting out changes to planning that will apply for major development from 6 April 2015. Therefore, from 6 April 2015 local planning policies and decisions on planning applications relating to major development are required to ensure that sustainable drainage systems (SuDS) are used for the management of surface water. As the Lead Local Flood Authority, Bedford Borough Council is required under Article 18 of the Town and Country Planning (Development Management Procedure) (England) Order 2015 (the Development Management Procedure Order) to provide consultation response on the surface water drainage provisions associated with major development.

Major development is defined within the Development Management Procedure Order as development that involves any one or more of the following:

- 1. the winning and working of minerals or the use of land for mineral working deposits;
- 2. waste development;
- 3. the provision of dwelling houses where:
- 3.1. the number of dwelling houses to be provided is 10 or more; or
- 3.2. the development is to be carried out on a site having an area of 0.5 hectares or more and it is not known whether the development falls within sub-paragraph 3.1;
- 4. the provision of a building or buildings where the floor space to be created by the development is 1,000 square metres or more; or
- 5. development carried out on a site having an area of 1 hectare or more.

As such, the development is classed as a major development given the number of dwellings to be provided is to be 43. The drainage strategy will be in line with the 2018 Bedford Borough Council SuDS SPD.

2.0 Site details

2.1 Site location

TABLE 1: SITE LOCATION

Site address:	Chantry Avenue, Kempston, Bedford, MK42 7QX		
Site area:	1.20ha		
Existing land use:	Commercial		
OS NGR:	TL034468		
Local Planning Authority:	Bedford Borough Council		
	Image: State Sta		

2.2 Site description

The site is located in south Kempston in an industrial estate with residential housing to the north and east and commercial buildings to the south and west. The site can be accessed from Chantry Avenue and currently comprises several industrial buildings with surrounding concrete hardstanding. A small section in the centre of the site is greenfield land.

The closest watercourse to the site is the River Great Ouse which is approximately 100m to the south-east.

2.3 Development proposal

Development proposals include the demolition of the existing commercial buildings and construction of 43 dwellings with subsequent parking and an access road.

Development plans can be found in Appendix A.

3.0 Flood Risk

3.1 Sequential test

According to the Environment Agency's Flood Map for Planning the site lies in Flood Zone 1, which is described in the NPPF as land having a less than 1 in 1,000 annual probability of river or sea flooding (less than 0.1% AEP).

FIGURE 1: ENVIRONMENT AGENCY FLOOD MAP FOR PLANNING

The NPPF follows a sequential risk-based approach in determining the suitability of land for development in flood risk areas, with the intention of steering all new development to the lowest flood risk areas. NPPF Planning Practice Guidance (PPG) Table 2 confirms the 'Flood risk vulnerability classification' of a site, depending upon the proposed usage. This classification is subsequently applied to Table 3 'Flood risk vulnerability and flood zone compatibility' to determine whether:

- The proposed development is suitable for the flood zone in which it is located; and
- Whether an Exception Test is required for the proposed development

The proposed development is classed as a 'more vulnerable' development in accordance with NPPF PPG within Flood Zone 1 and is therefore appropriate for the location.

3.2 Flooding history

According to the Bedford Borough Council 2020 Level 1 Strategic Flood Risk Assessment (SFRA), the site area is not within an area that has experienced flooding in the past.

An online search also gave no results of flooding in the local vicinity of the site.

3.3 Fluvial (Rivers)

According to the Environment Agency's Flood Map for Planning the site lies in Flood Zone 1, which is described in the NPPF as land having a less than 1 in 1,000 annual probability of river or sea flooding (less than 0.1% AEP). As such, the site is at low risk of fluvial flooding.

3.4 Flood defence breach or overtopping

3.4.1 Breach risk

The site is not protected by any formally raised defences and as such, is not at risk of flooding from this source.

3.4.2 Overtopping risk

The site is not protected by any formally raised defences and as such, is not at risk of flooding from this source.

3.5 Coastal/tidal

The site is located at a considerable distance from the coast and is therefore not at risk of flooding from this source.

3.6 Pluvial (Surface water)

When the infiltration capacity of land or the drainage capacity of a local sewer network is exceeded, excess rainwater flows overland. This water will collect in topographic depressions and at obstructions, which can inundate development in low lying areas. The severity of the rainfall event, the degree of saturation of the soil before the event, the permeability of soils and geology, and the gradient of the surrounding land and it's use; all contribute to and affect the severity of overland flow.

The Environment Agency Flood Map for Surface Water (Figure 2), can be used to see the approximate areas that would experience surface water flooding from a range of AEPs, which is used to categorise the risk (Table 2).

RESILIENCE

& FLOOD RISK

Chantry Avenue, Kempston 12/07/2022 Version 1.0

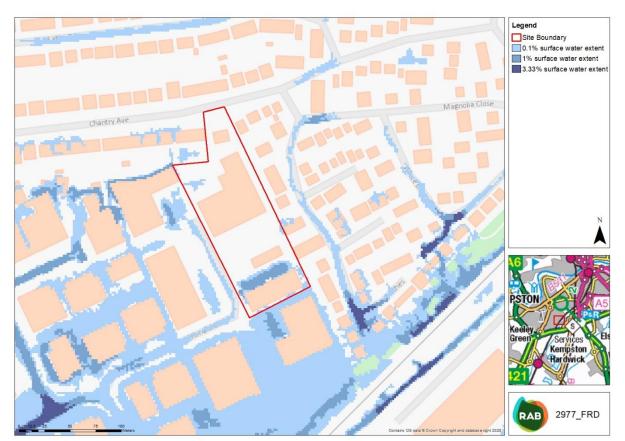


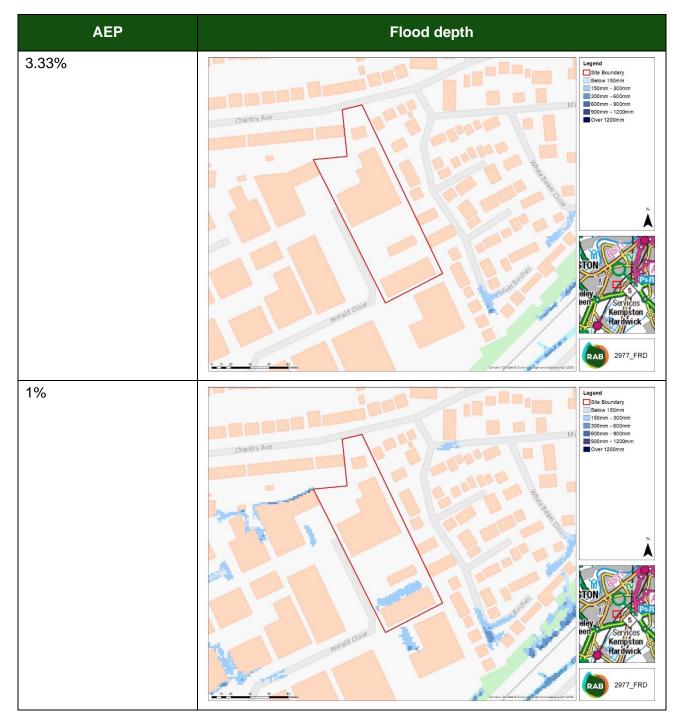
FIGURE 2: ENVIRONMENT AGENCY FLOOD RISK FROM SURFACE WATER

TABLE 2: Environment Agency Surface Water Risk Categories

Surface Water Risk Category	Surface water flooding Annual Exceedance Probability
Very Low	< 0.1%
Low	Between 1% and 0.1% (1 in 100 years and 1 in 1000 years)
Medium	Between 1% and 3.3% (1 in 100 years and 1 in 30 years)
High	> 3.3% (1 in 30 years)

The Surface Water map identifies that there is a medium risk of surface water flooding for the site but only at a specific and limited part of the site. The site should remain dry during the 3.33% AEP surface water event.

A small section to the south of the site is shown in


Table 3 below to experience flood depths of up to 300mm. During the 0.1% AEP, an additional section is shown to experience flooding with depths reaching 600mm at the southern area. This risk is clearly associated with runoff ponding at that area due to the local topography.

The addition of a SuDS scheme will better manage surface water, compared to the existing condition, and reduce the risk of surface water flooding on the site.

TABLE 3: SURFACE WATER FLOOD DEPTHS FOR A RANGE OF AEP'S



RESILIENCE

& FLOOD RISK

Chantry Avenue, Kempston 12/07/2022 Version 1.0

3.7 Artificial water bodies

According to the Environment Agency's reservoir flood map (

Table 3), the site is not at risk of flooding from reservoirs.

Maximum extent of flooding from reservoirs:

when river levels are normal
when there is also flooding from rivers

FIGURE 3: ENVIRONMENT AGENCY RESERVOIR FLOOD MAP

3.8 Groundwater

Groundwater flooding is water originating from sub-surface permeable strata which emerges from the ground, either at a specific point or over a wide diffuse location and inundates low lying areas. A groundwater flood event results from a rise in groundwater level sufficient for the water table to intersect the ground surface and inundate low lying land.

British Geological Survey (BGS) records indicate that the proposed development site overlies bedrock composed of Peterborough Member - mudstone. There is no recorded evidence of the superficial deposits in the area.

Borehole TL04NW284 located on-site details the site to comprise silty clay up to a depth of 4m below ground level.

The Magicmaps tool indicates the site to be within an area of low groundwater vulnerability.

The Soilscapes application suggests the site is within an area comprising lime-rich loamy and clayey soils with impeded drainage. This suggests that the ground material is impermeable and could provide a barrier to rising groundwater levels.

As there is a high degree of variability when considering groundwater flooding, using historic flooding is not a robust measure of the risk of flooding in future years.

3.9 Sewers

Anglian Water is responsible for the adopted surface and foul sewer networks within the District and maintain a DG5 register of sites affected by sewer flood incidents on a post code basis. According to the 2020 SFRA, the post code area of 'MK42 7' has experienced 3 incidents of sewer flooding in the past.

It is important to note that previous sewer flood incidents, or the lack thereof, do not indicate the current or future risk to the site. Upgrade work could have been carried out to alleviate any issues or conversely, in areas that have not experienced sewer flooding incidents, the local drainage infrastructure could deteriorate leading to future flooding.

4.0 Mitigation measures

4.1 Risk to buildings

4.1.1 Finished floor levels

In accordance with BS8533:2017 'Assessing and managing flood risk in development – code of practice', in order to afford a level of protection against flooding it is recommended that finished floor levels should be set at a nominal 300mm above either the 1% AEP of fluvial flooding or the 0.5% AEP of tidal flooding depending on which is greater (both including climate change).

The site is located in Flood Zone 1 with certain limited site areas being at medium surface water risk due to the local topography. Given the proposed inclusion of SuDS, which will efficiently manage surface water at site level, it is being proposed to set the finished floor level 150mm above surrounding ground level to mitigate against the unpredictable occurrence of infrastructure failure.

4.1.2 Flood resistance

Flood resistance is a strategy of temporary or permanent measures taken to reduce the amount of flood water that will enter buildings. It is not considered appropriate to adopt a water exclusion (or 'resistance') strategy given the assessed likelihood of flooding to the building.

4.1.3 Flood recoverability

It is not considered appropriate to adopt a flood recoverability strategy given the assessed likelihood of flooding to the building.

4.2 Risk to occupiers

4.2.1 Safe access/egress

The site entrance and access road should remain dry during events up to and including the surface water 0.1% AEP and as such, safe access and egress is achievable.

4.3 Risk to others

4.3.1 Floodplain compensation

No development is proposed within the 1% AEP + CC fluvial extent and as such, floodplain compensation is not required.

4.3.2 Surface water run-off

Information surrounding potential methods to further reduce surface water run-off, such as through the incorporation of incorporate Sustainable Drainage Systems (SuDS), can be found within section 5.0 below.

5.0 Drainage Strategy

5.1 Existing runoff condition

5.1.1 Existing drainage arrangements

The site naturally slopes towards the south from Chantry Avenue with an average slope of 1:80. It is unknown what the current drainage arrangements are on-site due to the lack of a topographic and utilities survey. It is likely that surface water runoff is collected and discharged directly into the surface water sewer that is present on-site.

5.1.2 Greenfield runoff

The greenfield runoff rate was calculated using the IH124 method for determining Greenfield runoff rate built into Microdrainage WinDes 2013.1 (including the modification given in the Interim Code of Practice for SUDS, Chapter 6):

- SAAR (mm) = 550
- Area (ha) = 0.637
- Soil = 0.450
- Region = 5

The QBAR was calculated at 3.3 l/s/ha (see Appendix D). The greenfield runoff rate was calculated on the basis of the proposed hardstanding area of 0.637ha.

AEP (%)	Greenfield peak flow rate (I/s/ha)	Greenfield peak flow rate (I/s)
100	2.9	1.8
QBAR	3.3	2.1
3.33	8.0	5.1
1	11.8	7.5
1 +30% Climate Change*	15.3	9.7

TABLE 4: GREENFIELD RUNOFF RATES

* Anglian river basin higher central allowance for flow estimations

5.1.3 Brownfield runoff

The brownfield runoff rate has been estimated using the existing hardstanding area of 0.746ha and the Modified Rational Method. The Modified Rational Method calculates runoff based on the following formula:

Q=2.78 x C (Cv x Cr) x i x A

Where Cv and Cr are coefficients, which equal 1 when multiplied together, i is rainfall intensity in mm/hr, and A is area in hectares. Rainfall intensity has been identified using Microdrainage Source Control.

Table 5 below shows the estimated peak flow runoff rates for a range of AEPs for the existing condition using an area of 0.746ha.

AEP (%)	Rainfall intensity (mm/hr)	Brownfield peak flow rate (I/s)
50	34.792	72.15
3.33	78.504	162.81
1	104.387	216.49
1 + 40% Climate Change**	146.142	303.08

TABLE 5: ESTIMATED BROWNFIELD PEAK FLOW RUNOFF RATES

**Upper end peak rainfall intensity allowance for Anglia

5.2 SuDS feasibility

The SuDS Manual (2015) discusses the SuDS approach to managing surface water runoff which is intended to mimic the natural catchment process as closely as is possible. The approach sets out the design objectives in respect of SuDS:

- Use of surface water runoff as a resource;
- Manage rainwater close to where it falls (at source);
- Manage runoff on the surface (above ground);
- Allow rainwater to soak into the ground (infiltration);
- Promote evapotranspiration;
- Slow and store runoff to mimic natural runoff rates and volumes;
- Reduce contamination of runoff through pollution prevention and by controlling the runoff at source; and
- Treat runoff to reduce the risk of urban contaminants causing environmental pollution.

Depending on the characteristics of the site and local requirements, these may be used in conjunction and varying degrees. Table 6 presents the functions of the SuDS components (from which a management train can be created) and their feasibility in respect of the site.

TABLE 6: FEASIBILITY OF $\ensuremath{\mathsf{SuDS}}$ techniques at the development site

Technique	Description	Feasibility Y / N / M (Maybe)
Good building design and rainwater harvesting	Components that capture rainwater and facilitate its use within the building or local environment.	M – traditional rainwater harvesting is not included in the proposed design due to long-term maintenance concerns however, water butts could be used.

Technique	Description	Feasibility Y / N / M (Maybe)
Porous and pervious surface materials	Structural surfaces that allow water to penetrate, thus offering attenuation potential, while reducing the rate of runoff (green roofs, pervious paving).	Y – there is opportunity to include porous materials such as permeable paving on the site.
Infiltration Systems	Components that facilitate the infiltration of water into the ground. These often include temporary storage zones to accommodate runoff volumes before slow release to the soil.	N – the site geology and soil material would not allow for a viable infiltration rate.
Conveyance Systems	Components that convey flows to downstream storage systems (e.g. swales, watercourses).	N – there is limited space on site for conveyance features.
Storage Systems	Components that control the flows and, where possible, volumes of runoff being discharged from the site, by storing water and releasing it slowly (attenuation). These systems may also provide further treatment of the runoff (e.g. ponds, wetlands, and detention basins).	Y – there is room on site for storage features to store runoff.
Treatment Systems	Components that remove or facilitate the degradation of contaminants present in the runoff.	Y – the above SuDS features can provide treatment benefits to the surface water.

The site has the potential to incorporate a number of SuDS options to manage surface water. These are discussed in more detail below.

5.3 Proposed discharge

The 2015 SuDS Manual recommends a specific hierarchy in terms of surface water discharge destinations:

- 1. Discharge into the ground.
- 2. Discharge into a surface water body.
- 3. Discharge to a surface water sewer.
- 4. Discharge to a combined sewer.

Discharge into the ground may be challenging at the site due to the soil characteristics comprising clayey soils with slightly impeded drainage. In addition, there is limited room to incorporate infiltration features whilst allowing for a 5m boundary around all site and adjacent buildings.

There is no surface water body in close proximity to the site.

There is an Anglian Water surface water sewer located on the edge of the eastern part of the site which can be used as the ultimate discharge point. It is therefore proposed to discharge surface water at the Anglian Water surface water sewer (manhole 5751) at a control rate of 2.1 l/s. The discharge rate has been limited to QBAR for all events up to and including the 1% AEP + 40% CC (1 in 100 year plus 40% climate change). A pre-planning enquiry has been submitted to Anglian Water to confirm there is discharge capacity in their system (Appendix B).

5.4 Proposed surface water management

The proposed drainage scheme has been modelled in Microdrainage Source Network to understand the evolving flow regime under flood conditions and the potential for flooding. The proposed scheme (see Appendix B) will integrate a range of features, in line with the SuDS Manual philosophy, taking into consideration site constraints. In detail, a combination of permeable paving, a raingarden and a cellular storage device will manage the runoff from the total impermeable site area of 0.637ha.

Permeable paving will be used for all car parking spaces with roof runoff being directed into these structures at each plot. A pipe will run beneath the road to convey surface water from each area of the site to the south where the cellular storage device will be located. The raingarden should be located above the cellular storage device and allow water to infiltrate directly into the tank. Due to the relatively shallow surface water sewer, a pump is required to discharge water from the site into the Anglian Water surface water sewer at a controlled rate of 2.11/s. The scheme can be seen in Appendix B.

5.4.1 Permeable pavement

A Type A & Type C (see Table 20.1 of the SuDS Manual) permeable pavement will be used to manage roof and road runoff at the site allowing water to infiltrate to the sub-base prior to conveying it downstream via the piped network. The paving will be located at all car parking spaces giving a total area of 1540m².

It is recommended to discharge roof runoff directly onto the permeable pavement surface where possible. Alternatively, or where it is not practicable roof runoff should discharge to the sub-base on the permeable pavement via catchpits and diffusers, as described in the Interpave Guidance document (Figure 4).

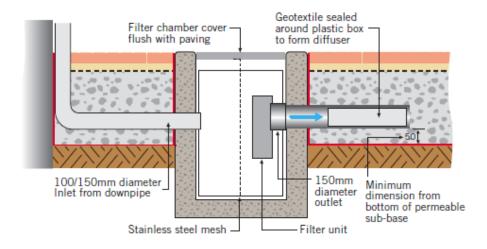


FIGURE 4: TYPICAL ROOF DRAINAGE OUTLET (INTERPAVE GUIDANCE DOCUMENT, 2008)

Road runoff from the access road and relevant parking areas will infiltrate to the permeable pavement and receive an appropriate level of treatment. Kerb design should be in line with local standards and at least 75mm to encourage water to infiltrate to the permeable pavement structure efficiently.

The laying course material must be sufficiently coarse to allow the free vertical flow of water and to prevent its intrusion into the underlying coarse-graded aggregate, yet sufficiently fine to permit the accurate installation of the paving blocks. The material should comply with the requirements of a material of type 2/6.3 Gc 80/20 according to BS EN 13242:2002. All capping materials should meet the requirements of either 6F1 or 6F2 of Table 6.1 of Highways Agency's '*Specification for Highway Works – Series 600 – Earthworks*'.

5.4.2 Raingarden

A raingarden has been incorporated into the site at the south end which can be seen in the relevant drawings in Appendix B. This feature will have a shallow depression (150mm) to allow for standing water followed by a filter medium of compost/sand-amended native soils or specified soil mixes. The base of the structure should have a permeable geotextile laid to allow infiltration of water into the below cellular storage device and to prevent sediment entering the tank.

The raingarden should be constructed in line with the CIRIA Guidance on the Construction of SuDS C768 (2017) report.

5.4.3 Cellular storage

A cellular storage tank (ACO Stormbrixx or similar) should be used to manage the runoff from all impermeable areas on site (impermeable area = $6370m^2$). The tank should have an area of $750m^2$ and a depth of 0.914m giving a total storage capacity of $651.225m^3$. The tank is located in the south of the site and should have a cover of 1.2m. The tank manufacturer must confirm structural reliability.

The tank will receive runoff via an appropriate piped network. All inlets into the tank should have a silt trap installed upstream to prevent build-up of silt in the tank, which reduces its total storage capacity.

The cellular storage units must be installed in line with the CIRIA Guidance on the Construction of SuDS C768 (2017) report.

5.4.4 Water quantity benefits

The scheme will offer significant reductions in runoff rates, compared to the corresponding greenfield/brownfield runoff rate as shown in Table 7. This is to counterbalance the increased volume of runoff as a result of the development. As such, the proposed scheme provides water quantity benefits, in line with the 2015 SuDS Manual.

As such, the proposed scheme provides water quantity benefits, in line with the 2015 SuDS Manual.

AEP (%)	Greenfield peak flow rate (I/s)	Brownfield peak flow rate (I/s)	Proposed peak flow rate (l/s)	Change from greenfield (%)
QBAR	2.1	72.15	2.1	0
3.33	5.1	162.81	2.1	58.8

TABLE 7: EXISTING AND PROPOSED PEAK FLOW RUNOFF RATES

AEP (%)	Greenfield peak flow rate (I/s)	Brownfield peak flow rate (I/s)	Proposed peak flow rate (I/s)	Change from greenfield (%)
1	7.5	216.49	2.1	72.0
1 +40%CC**	10.5	303.08	2.1	80.0

**Upper end peak rainfall intensity allowance for Anglia

5.4.5 Water quality benefits

In line with the SuDS Manual, the water must receive a certain degree of treatment. There are no significant risks of pollution as a result of the development as it is classed a low density residential with no major risks.

According to Table 26.2 of the SuDS Manual and based on the land use, the site has a low pollution hazard level. In detail, the pollution hazard indices are:

- Total Suspended Solids= 0.5
- Heavy Metals= 0.4
- Hydrocarbons= 0.4

Consequently, the proposed SuDS feature(s) must have a higher mitigation index. Mitigation indices for various SuDS components can be found in Table 26.3 of the SuDS Manual (2015).

Total SuDS Mitigation Index = mitigation index₁ + (0.5 x mitigation index_n)

Where mitigation index_n = mitigation index for component n.

The proposed drainage scheme utilises a cellular storage tank, permeable paving and a raingarden. An SDS Aqua-Swirl (or similar) hydrodynamic separator should be used to remove pollutants from the system before runoff enters the cellular storage device.

Using Table 26.3 of the SuDS Manual (2015), the mitigation indices for each pollutant and for the permeable paving was identified:

- TSS SuDS mitigation index = 0.7 > 0.5
- Heavy Metals SuDS mitigation index = 0.6 > 0.4
- Hydrocarbons SuDS mitigation index = 0.7 > 0.4

Consequently, the proposed scheme is in line with the water quality requirements of the SuDS Manual (2015).

5.5 Future resilience

5.5.1 Designing for exceedance

It is inevitable that as a result of heavy or extreme rainfall, the capacities of sewers and other drainage systems will be exceeded on occasion. Drainage exceedance will occur when the rate of surface water runoff exceeds the inlet capacity of the drainage system, when the receiving water or pipe system becomes overloaded, when the outfall becomes restricted due to flood levels in the receiving water, or due to poor maintenance of the SuDS features.

Minor flooding can be seen to affect the site during the 1% AEP + 40% CC event (Appendix B) however, the flood depths are less than 1mm and therefore, should not prove to be a risk to the site.

Should a blockage occur in the system, surface water would flow south following the topography of the site towards the raingarden and cellular storage device where it would be re-captured and get diverted back into the system. Exceedance flow routes have been mapped in the drainage layout in Appendix B.

A closed board fencing with concrete base should be used at the south and southeast boundaries of the site to ensure flood water from an infrastructure failure is contained within the site boundary. This approach would reduce the risk of downstream flooding should the pump fails.

5.5.2 Urban creep

In line with the local policies of Bedford Borough Council, a 10% increase to the total impermeable site area has been modelled to ensure the system can deal with future building work on site (see Appendix B). Minor flooding was seen to affect manholes S2, S3 and S1a (see Appendix B) with flood depths reaching 2mm. the minor depths should not affected the site buildings and should be re-captured further down in the system by the permeable paving.

5.6 Amenity and biodiversity

Primary consideration should be given to locally native species, and plants that benefit wildlife through their nectar, fruit, or berries. Generally, the choice of plant species should reflect the usual design decisions relating to their location in terms of aspect, sun or shade, height, from, colour, whether evergreen or deciduous, native or ornamental, and soil factors such as pH, depth, nutrient status and organic content. However, the consideration has to be their ability to withstand the fluctuations in soil moisture that will occur.

6.0 Maintenance and Management Plan

The following maintenance and management plan has been formed to assist with ensuring the longevity of the surface water scheme to provide multiple benefits throughout its lifetime. The plan will also aim to prevent any blockages or damage occurring to each component of the scheme to minimise the risk of flooding as much as possible.

The level of inspection and maintenance will vary depending on the type of SuDS component and scheme, the land use, and the type of vegetation. It is vital that SuDS construction is supervised and inspected on completion if owners are to avoid taking on liabilities and to ensure the specified materials are being used and placed correctly. Incorrect materials or installation should be rejected as they will adversely affect the performance, maintenance costs and ultimately the design life of the SuDS components.

The site manager must maintain maintenance logs for all elements.

The SuDS features incorporated to this particular design have to be maintained in order to ensure efficient water treatment and water management.

6.1 SuDS features checklist

• Attenuation tanks are used to create a below-ground void space for the temporary storage of surface water before infiltration, controlled release or use.

- **Permeable surfaces** as permeable block paving, porous Asphalt, gravel or free draining soils that allow rain to percolate through the surface into underlying drainage layers. They must be protected from silt, sand, compost, mulch, etc.
- **Raingardens** are planted areas with engineered topsoil over drainage layers that allow water to soak into the ground.
- SuDS flow control structures are usually small orifices in control chamber, slots or V notches in weirs. They are usually near the surface so are accessible and easy to maintain. They may be in baskets, in small chambers or in the open.
- **Inspection Chambers** and rodding eyes are used on bends or where pipes come together. They allow cleaning of the system if necessary.
- Pumping chambers are used to convey wastewater where a gravity system is not achievable.

6.2 Sustainable Drainage Maintenance Specification

6.2.1 General requirements

Maintenance	Frequency	Owner
Maintenance activities comprise:		
Regular maintenance	Will vary depending on	(Private or
Occasional tasks	activity	adopted)
Remedial Work		

Regular maintenance (including inspections and monitoring). Consists of basic tasks done on a frequent and predictable schedule, including vegetation management, litter and debris removal, and inspections.

Occasional maintenance Comprises tasks that are likely to be required periodically, but on a much less frequent and predictable basis than the routine tasks (sediment removal is an example).

Remedial maintenance Comprises intermittent tasks that may be required to rectify faults associated with the system, although the likelihood of faults can be minimised by good design.

Where remedial work is found to be necessary, it is likely to be due to site-specific characteristics or unforeseen events, and as such timings are difficult to predict.

Avoid use of weedkillers and pesticides to prevent chemical pollution.

6.2.2 Raingarden

TABLE 8: MAINTENANCE SCHEDULE FOR RAINGARDENS, ADAPTED FROM CIRIA C753

Maintenance	Frequency	Owner
 Regular Monitoring Remove litter and surface debris and weeds. Inspect infiltration surfaces for silting and ponding, record de-watering time of the facility to determine if maintenance is required. 	Quarterly	Private management company (to be confirmed by
Check operation of underdrains by inspection of flows after rain.		developer)

Maintenance	Frequency	Owner
 Assess plants for disease infection, poor growth, invasive species and replace as necessary. Inspect inlets and outlets for blockages. 		
 Occasional Tasks Infill any holes or scour in the filter medium, improve erosion protection if required. Repair minor accumulations of silt by raking away surface mulch, scarifying surface of medium and replacing mulch. 	As required	
 Remedial Work Remove and replace filter medium and vegetation above 	As required but likely to be > 20 years	

6.2.3 Permeable pavement

TABLE 9: MAINTENANCE SCHEDULE FOR PERMEABLE PAVEMENTS, ADAPTED FROM CIRIA RP992/23 AND C753

Maintenance	Frequency	Owner
 Regular Monitoring Brush regularly and remove sweepings from all hard surfaces. Inspect all inflows/outflows along with manholes for blockages. Check monitoring wells for any signs of siltation. 	Quarterly and after flood events	
 Occasional Tasks Brush and vacuum surface once a year to prevent silt blockage and enhance design life. Check operation of perforated pipes by inspection of flows after rain 	Every six months	Private
 Remedial Work Monitor effectiveness of permeable paving and if water does not infiltrate immediately a reinstatement of the top layers or specialist cleaning. The manufacturer should be contacted to provide further guidance. Remedial work to any depressions, rutting and cracked or broken blocks considered detrimental to the structural performance or a hazard to users, and replace lost jointing material. Rehabilitation of surface and upper substructure by remedial sweeping. Check monitoring wells and replace permeable layer and sand-bed layer if heavily silted. 	As required and after flood events	management company (to be confirmed by developer)

TABLE 10: MAINTENANCE SCHEDULE FOR THE CELLULAR STORAGE TANK, ADAPTED FROM CIRIA RP992/23 AND C753

Maintenance	Frequency	Owner
 Regular Cleaning Inspect and identify any areas that are not operating correctly and ensure free flow is viable. If required, take remedial action. Remove litter and debris from the catchment surface. 	Monthly for 3 months, then annually. Monthly	
 Regular Monitoring Inspect/check all rainwater pipe inlets, pump chamber and vent to ensure that they are in good condition and operating as designed; repair/rehabilitate inlets, outlet, and vent if required following advice from manufacturer. Make visual inspection of exceedance route and check route is not blocked by new fences, walls, bollards, etc. Remove as necessary. 	Annually	Private management company (to be confirmed by developer)
 Occasional Tasks Survey inside of tank for sediment build-up and remove if necessary*. 	Every 5 years or as required*	
 Replace cellular storage tank at the end of design life** 	Every 25 years**	

*Silt disposal to be undertaken in line with the Environment Agency Regulatory Position Statement 055 and by a qualified professional.

**Assuming maintenance schedule is followed, and remedial action is taken when required.

It is imperative that the management company maintains record logs, including dated images, of the cellular storage access chamber, all inlets, outlet flow control chamber, and silt traps. These records should be shared with the site owner.

Following 25 years from the installation of the proposed cellular storage tank, the tank manufacturer must review the records from the last 5 years and identify whether there is a requirement for replacement of the feature. Should a tank replacement be required, a qualified contractor must be appointed and develop a construction phase plan taking into consideration the piled foundations while clearly identifying the required temporary works to enable the tank replacement.

6.2.5 Inlets, outlets, controls and inspection chambers

Please note that the flow control chambers will require regular maintenance. The maintenance schedule for the chamber must be specified by the manufacturer as different features have different requirements.

TABLE 11: MAINTENANCE SCHEDULE FOR THE INLETS, OUTLETS, CONTROL STRUCTURES, PUMPS AND INSPECTION CHAMBERS/MANHOLES

Maintenance	Frequency	Owner
 Regular maintenance Inlets, outlets: Inspect surface structures removing obstructions and silt as necessary. Check there is no physical damage Strim vegetation 1m min. surround to structures and keep hard aprons free from silt and debris 	Monthly	Private management company (to be confirmed by developer)

RESILIENCE & FLOOD RISK

Maintenance	Frequency	Owne
Inspection chambers/manholes and below ground flow		
 control chambers: Remove cover and inspect ensuring water is flowing freely and that the exit route for water is unobstructed. Remove debris and silt. Undertake inspection after leaf fall in autumn. 	Monthly for 12 months, then annually.	
 Pumping Chamber: Remove cover and inspect pump flow capacity ensuring no drop in flow has occurred. Ensure no build-up of siltation has occurred in pump manhole. Check operation pressure by calculating difference between inlet and outlet pressure and ensure it is operating on the pressure curve. Check for corrosion on parts such as main body, flanges, impeller and casing plug. Monitor pump vibration. Excessive vibration could be a sign of pump misalignment, bearing failures, cavitation, and obstructions in the suction and discharge lines. Monitor and log bearing temperatures, lubricant level, and vibration. Lubricant should be clear with no signs of bubbling. If bubbling is occurring, this is a good indication to add more lubricant to decrease the temperature of the bearings. If there is an increase in vibration in the bearings, this may be a good indicator of impending bearing failure. 	Monthly	
Occasional tasksCheck topsoil levels are 20mm above edges of	As necessary	
baskets and chambers to avoid mower damage.		-
 Remedial Work Repair physical damage if necessary. Replace seals such as gaskets and mechanical seals on pump if worn. 	As required	

6.2.6 Drainage network

TABLE 12: MAINTENANCE SCHEDULE FOR PIPED DRAINAGE NETWORK

Drainage Element	Maintenance	Frequency	Owner
Downpipes and gullies	 Regular maintenance Open any covers, inspect integrity of gullies and repair as necessary. 	Monthly	Private management company (to

Drainage Element	Maintenance	Frequency	Owner
	Remove silt / debris by suction.	Annually or as required	be confirmed by developer)
Pino notwork	Regular maintenance Remove any sediment within the network and inspection chambers.		
Pipe network	 Open covers inspect integrity of chambers and repair as necessary. Remove silt / debris by suction. 	Annually	

7.0 Conclusion

The proposed development at 64 Chantry Avenue, Kempston, Bedford is located in Flood Zone 1 as defined in the NPPF. The proposal includes the demolition of the existing commercial buildings and the construction of 43 dwellings with associated parking and an access road (Appendix A).

On the basis of the available information from the Environment Agency and Bedford Borough Council, the site is at low risk of flooding from fluvial, groundwater and sewer sources. Part of the site could flood during the 1% AEP for surface water however, this risk should be managed by the proposed drainage system.

The proposed development must incorporate SuDS as described in Section 5.4 of this report and in the relevant drawing in Appendix B.

The proposed development can be deemed appropriate, provided that the recommendations in this report are adhered to, it will not increase the flood risk to other people, and it will provide multiple benefits with respect to the sustainable management of surface water runoff.

8.0 Recommendations

- Finished floor level of the proposed building should be set 150mm above local ground level.
- The site should manage surface water through the use of SuDS as described in Chapter 5.0 of this report.
- Contractor to submit a S106 to Anglian Water prior to connecting to the public sewer.
- All SuDS features must be constructed in line with recommendations made in the CIRIA SuDS Manual (2015), Water UK's Design and Construction Guidance (2020), and the CIRIA Guidance on the Construction of SuDS (2017).
- All SuDS features should be maintained in line with Table 8, Table 9, Table 10, Table 11 and Table 12.
- Detailed drainage design should be undertaken at the detailed design stage.
- Developer to confirm details of the SuDS maintenance owner.
- A dual pump mechanism with battery back-up and trigger alarm must be specified in the detailed design stage.

- Closed board fencing with concrete base should be used at the south and southeast boundaries of the site to ensure flood water from an infrastructure failure is contained within the site boundary.
- Construction (Design and Management) Regulations 2015
 - The revised CDM Regulations came into force on April 2015 to update certain duties on all parties involved in a construction project, including those promoting the development. One of the designer's responsibilities is to ensure that the client organisation, in this instance Aragon Land & Planning Ltd is made aware of their duties under the CDM Regulations.
 - Contractor to prepare a Construction Phase Plan in line with CDM (2015).
 - Principal designer to develop a health and safety design risk assessment and an accident prevention plan, in line with CDM (2015).

Appendix A – Development proposals

Appendix B – Drainage

- Microdrainage Calculations:
 - 1% AEP + 40% CC
 - **1% AEP**
 - 3.33% AEP + 40% CC
 - o 3.33% AEP
 - 50% AEP
 - o QBAR
 - Urban Creep
- RAB Drawing
- Asset location search

RAB Consultants Ltd		Page 1
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		— Micro
Date 04/07/2022 11:46	Designed by Micro Drainage	
File 2977.MDX	Checked by	Drainage
Micro Drainage	Network 2020.1.3	
STORM SEWER DESIG	N by the Modified Rational Method	
Desig	<u>n Criteria for Storm</u>	
Pipe Sizes S	TANDARD Manhole Sizes STANDARD	
	FEH Rainfall Model	
	riod (years)	100
	all Version	2013
Si	Lte Location GB 503500 246823 TL 03500	46823 Point
Maximum Raint		550
Maximum Time of Concentra		30
		0.000
Volumetric Ru		0.750
Add Flow / Climate	PIMP (%)	100
Minimum Backdrop	-	0.200
Maximum Backdrop	-	1.500
Min Design Depth for Optim		1.200
Min Vel for Auto Design		1.00
Min Slope for Optimis	Sation (1:X)	500
Desig	gned with Level Soffits	
Time 1	rea Diagram for Storm	
Time Are (mins) (ha		
0-4 0.0.	4-8 0.525 8-12 0.078	
Total Are	a Contributing (ha) = 0.640	
Total 1	Pipe Volume (m³) = 19.936	
Network	Design Table for Storm	
« - Indi	cates pipe capacity < flow	
PN Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (mi	E. Base k HYD DIA Section ns) Flow (l/s) (mm) SECT (mm)	Type Auto Design
Net	work Results Table	
©1	982-2020 Innovyze	

RAB Consultants Ltd		Page 2
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Mirro
Date 04/07/2022 11:46	Designed by Micro Drainage	Drainage
File 2977.MDX	Checked by	Dialitacje
Micro Drainage	Network 2020.1.3	

Network Design Table for Storm

PN	Rain	T.C.	US/IL Σ	I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (l/s)	(l/s)	(l/s)	(m/s)	(l/s)	(l/s)

©1982-2020 Innovyze

RAB Consultants Ltd		Page 3
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Micro
Date 04/07/2022 11:46	Designed by Micro Drainage	Drainage
File 2977.MDX	Checked by	Diamage
Micro Drainage	Network 2020.1.3	

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S1.000	18.175	0.339	53.6	0.060	5.00	0.0	0.600	0	225	Pipe/Conduit	_
S1.001	22.225	0.148	150.2	0.060	0.00	0.0	0.600	0	300	Pipe/Conduit	ē
S1.002	21.311	0.228	93.5	0.070	0.00	0.0	0.600	0	300	Pipe/Conduit	ě
S2.000	15.675	0.632	24.8	0.070	5.00	0.0	0.600	0	225	Pipe/Conduit	•
S1.003	34.495	0.431	80.0	0.070	0.00	0.0	0.600	0	300	Pipe/Conduit	•
S3.000	33.003	0.220	150.0	0.070	5.00	0.0	0.600	0	225	Pipe/Conduit	0
S1.004	73.540	1.026	71.7	0.080	0.00	0.0	0.600	0	375	Pipe/Conduit	
S1.005	30.878	0.702	44.0	0.080	0.00	0.0	0.600	0	375	Pipe/Conduit	Ā
S1.006	5.033	0.067	75.1	0.080	0.00	0.0	0.600	0	150	Pipe/Conduit	Ä
S1.007	10.275	-1.939	-5.3	0.000	0.00	0.0	0.600	0	80	Pipe/Conduit	Ā
S1.008	5.031	0.034	150.0	0.000	0.00	0.0	0.600	0	150	Pipe/Conduit	ĕ

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)		Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
S1.000	176.56		30.376	0.060	0.0	0.0	0.0	1.79	71.2	28.7
S1.001	172.93	5.46	29.737	0.120	0.0	0.0	0.0	1.28	90.5	56.2
S1.002	170.29	5.68	29.563	0.190	0.0	0.0	0.0	1.63	115.0	87.6
S2.000	177.48	5.10	29.967	0.070	0.0	0.0	0.0	2.64	104.9	33.6
S1.003	166.49	6.00	29.335	0.330	0.0	0.0	0.0	1.76	124.3«	148.8
S3.000	172.22	5.52	29.125	0.070	0.0	0.0	0.0	1.07	42.4	32.6
S1.004	160.21	6.58	28.904	0.480	0.0	0.0	0.0	2.14	236.6	208.3
S1.005	158.25	6.76	27.878	0.560	0.0	0.0	0.0	2.74	302.5	240.0
S1.006	157.51	6.84	27.176	0.640	0.0	0.0	0.0	1.16	20.5«	273.0
S1.007	132.79	9.74	26.866	0.640	0.0	0.0	0.0	0.06	0.3«	273.0
S1.008	132.07	9.84	28.805	0.640	0.0	0.0	0.0	0.82	14.5«	273.0

©1982-2020 Innovyze

RAB Consultants Ltd		Page 4
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Micro
Date 04/07/2022 11:46	Designed by Micro Drainage	Drainage
File 2977.MDX	Checked by	Diamage
Micro Drainage	Network 2020.1.3	

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	Coni	MH nection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
S1	31.501	1.125	Open	Manhole	1200	S1.000	30.376	225				
S2	31.162	1.425	Open	Manhole	1200	S1.001	29.737	300	S1.000	30.037	225	225
S3	31.063	1.500	Open	Manhole	1200	S1.002	29.563	300	S1.001	29.589	300	26
S1a	31.092	1.125	Open	Manhole	1200	S2.000	29.967	225				
S4	31.053	1.718	Open	Manhole	1200	S1.003	29.335	300	S1.002	29.335	300	
									s2.000	29.335	225	
S2a	30.550	1.425	Open	Manhole	1200	S3.000	29.125	225				
S5	30.909	2.005	Open	Manhole	1350	S1.004	28.904	375	S1.003	28.904	300	
									s3.000	28.905	225	
S6	29.453	1.575	Open	Manhole	1350	s1.005	27.878	375	s1.004	27.878	375	
S7	29.290	2.114	Open	Manhole	1350	S1.006	27.176	150	s1.005	27.176	375	
S8	29.300	2.434	Open	Manhole	1200	S1.007	26.866	80	S1.006	27.109	150	313
S9	29.320	0.515	Open	Manhole	1200	S1.008	28.805	150	s1.007	28.805	80	
S	29.340	0.569	Open	Manhole	1200		OUTFALL		S1.008	28.771	150	

MH Name			Intersection Easting (m)	Intersection Northing (m)		Layout (North)					
S1	3465.964	2413.686	3465.964	2413.686	Required	•					
S2	3464.503	2395.569	3464.503	2395.569	Required						
S3	3473.854	2375.407	3473.854	2375.407	Required						
Sla	3457.637	2349.839	3457.637	2349.839	Required	-					
S4	3472.714	2354.126	3472.714	2354.126	Required						
S2a	3514.324	2337.274	3514.324	2337.274	Required	-					
	©1982-2020 Innovyze										

RAB Consultants Ltd	Page 5	
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Micro
Date 04/07/2022 11:46	Designed by Micro Drainage	Drainage
File 2977.MDX	Checked by	Diamage
Micro Drainage	Network 2020.1.3	ł

Manhole Schedules for Storm

MH Name		Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
S5	3485.104	2321.934	3485.104	2321.934	Required	4
S6	3517.031	2255.686	3517.031	2255.686	Required	~
S7	3544.792	2269.205	3544.792	2269.205	Required	-
S8	3546.807	2273.817	3546.807	2273.817	Required	•
S9	3547.364	2284.077	3547.364	2284.077	Required	í.
S	3548.222	2289.034			No Entry	•

©1982-2020 Innovyze

RAB Consultants Ltd		Page 6
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Micro
Date 04/07/2022 11:46	Designed by Micro Drainage	Drainage
File 2977.MDX	Checked by	Diginarie
Micro Drainage	Network 2020.1.3	I

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	Hyd Sect		MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S1.000	0	225	S1	31.501	30.376	0.900	Open Manhole	1200
S1.001	0	300	S2	31.162	29.737	1.125	Open Manhole	1200
S1.002	0	300	S3	31.063	29.563	1.200	Open Manhole	1200
S2.000	0	225	S1a	31.092	29.967	0.900	Open Manhole	1200
S1.003	0	300	S4	31.053	29.335	1.418	Open Manhole	1200
S3.000	0	225	S2a	30.550	29.125	1.200	Open Manhole	1200
S1.004	0	375	S5	30.909	28.904	1.630	Open Manhole	1350
S1.005	0	375	S6	29.453	27.878	1.200	Open Manhole	1350
S1.006	0	150	S7	29.290	27.176	1.964	Open Manhole	1350
S1.007	0	80	S8	29.300	26.866	2.354	Open Manhole	1200
S1.008	0	150	S9	29.320	28.805	0.365	Open Manhole	1200

Downstream Manhole

PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S1.000	18.175	53.6	s2	31.162	30.037	0.900	Open Manhole	1200
S1.001	22.225	150.2	s3	31.063	29.589	1.174	Open Manhole	1200
S1.002	21.311	93.5	S4	31.053	29.335	1.418	Open Manhole	1200
S2.000	15.675	24.8	S4	31.053	29.335	1.493	Open Manhole	1200
S1.003	34.495	80.0	s5	30.909	28.904	1.705	Open Manhole	1350
S3.000	33.003	150.0	S5	30.909	28.905	1.779	Open Manhole	1350
S1.004	73.540	71.7	S6	29.453	27.878	1.200	Open Manhole	1350
S1.005	30.878	44.0	s7	29.290	27.176	1.739	Open Manhole	1350
S1.006	5.033	75.1	S8	29.300	27.109	2.041	Open Manhole	1200
S1.007	10.275	-5.3	S9	29.320	28.805	0.435	Open Manhole	1200
S1.008	5.031	150.0	S	29.340	28.771	0.419	Open Manhole	1200

©1982-2020 Innovyze

RAB Consultants Ltd		Page 7
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Micro
Date 04/07/2022 11:46	Designed by Micro Drainage	Drainage
File 2977.MDX	Checked by	Dialitacje
Micro Drainage	Network 2020.1.3	

Area Summary for Storm

Pipe Number	РІМР Туре	PIMP Name	PIMP (%)	Gross Area (ha)	Imp. Area (ha)	Pipe Total (ha)
1.000	_	-	100	0.060	0.060	0.060
1.001	-	-	100	0.060	0.060	0.060
1.002	-	-	100	0.070	0.070	0.070
2.000	-	-	100	0.070	0.070	0.070
1.003	-	-	100	0.070	0.070	0.070
3.000	-	-	100	0.070	0.070	0.070
1.004	-	-	100	0.080	0.080	0.080
1.005	-	-	100	0.080	0.080	0.080
1.006	-	-	100	0.080	0.080	0.080
1.007	-	-	100	0.000	0.000	0.000
1.008	-	-	100	0.000	0.000	0.000
				Total	Total	Total
				0.640	0.640	0.640

A - 1 - 1 - 1	s Ltd						Page	e 8
Cathedral Hous	e							
Beacon Street								-
Lichfield WS1	.3 7AA						Mi	
Date 04/07/202	2 11:46		Desigr	ned by Mi	cro Draina	age		ainage
File 2977.MDX			Checke	ed by				
Micro Drainage	2		Networ	rk 2020.1	.3			
		<u>Onl</u> :	ine Contro	ols for S	torm			
<u>Hydro-B</u>	<u>rake® Op</u>	otimum Mai	nhole: S7,	DS/PN:	<u>s1.006, V</u>	olume (m³): 6.3	<u>3</u>
					-0065-2900-			
			esign Head ign Flow (l			2.114 2.9		
			Flush-F	lom	-	alculated		
			Object		nimise bloc			
			Applicat Sump Availa			Surface Yes		
			Diameter (65		
	Ni si su o		vert Level Diameter (:	()		27.176 100		
		-	Diameter (1200		
Control Poi	ints	Head (m)	Flow (l/s)	Cont	rol Points	Head	(m) F]	Low (l/s
Design Point (Ca	lculated)	2.114	2.9		Kick-	-Flo® 0	.584	1.
F	lush-Flo™	0.265 ations have		I	over Head H ead/Dischar	-	- nship f	
	'lush-Flo™ al calcula ptimum as	ations have specified	e been base . Should a	' d on the H nother typ	ead/Dischar e of contro	ge relation l device o	ther th	for the
F The hydrologic Hydro-Brake® O Hydro-Brake Op	lush-Flo™ al calcula ptimum as timum® be	ations have specified utilised	e been base . Should a then these	d on the H nother typ storage ro	ead/Dischar e of contro uting calcu	ge relation l device o lations wi	ther th ll be	for the man a
F The hydrologic Hydro-Brake® O Hydro-Brake Op invalidated Depth (m) Fl 0.100	'lush-Flo™ al calcula ptimum as timum® be .ow (1/s) 1.8	ations have specified utilised Depth (m) 1.200	e been base . Should a then these Flow (1/s) 2.2	d on the H nother typ storage ro Depth (m) 3.000	ead/Dischar e of contro uting calcu Flow (1/s) 3.4	ge relation 1 device o 1ations wi Depth (m) 7.000	ther th ll be Flow	nan a (1/s) 5.0
F The hydrologic Hydro-Brake® O Hydro-Brake Op invalidated Depth (m) Fl 0.100 0.200	'lush-Flo™ al calcula ptimum as timum® be .ow (1/s) 1.8 2.1	ations have specified utilised Depth (m) 1.200 1.400	e been base . Should a then these Flow (1/s) 2.2 2.4	d on the H nother typ storage ro Depth (m) 3.000 3.500	ead/Dischar e of contro uting calcu Flow (1/s) 3.4 3.7	ge relation 1 device o 1ations wi Depth (m) 7.000 7.500	ther th ll be Flow	for the han a (1/s) 5.0 5.2
F The hydrologic Hydro-Brake® O Hydro-Brake Op invalidated Depth (m) Fl 0.100	'lush-Flo™ al calcula ptimum as timum® be .ow (1/s) 1.8	ations have specified utilised Depth (m) 1.200	e been base . Should a then these Flow (1/s) 2.2 2.4	d on the H nother typ storage ro Depth (m) 3.000 3.500 4.000	ead/Dischar e of contro uting calcu Flow (1/s) 3.4 3.7 3.9	ge relation 1 device o 1ations wi Depth (m) 7.000 7.500 8.000	ther th ll be Flow	For the han a (1/s) 5.0
F The hydrologic Hydro-Brake® O Hydro-Brake Op invalidated Depth (m) Fl 0.100 0.200 0.300 0.400 0.500	'lush-Flo™ al calcula ptimum as timum® be ow (1/s) 1.8 2.1 2.1 2.0 1.9	ations have specified utilised Depth (m) 1.200 1.400 1.600 1.800 2.000	e been base . Should a then these Flow (1/s) 2.2 2.4 2.6 2.7 2.8	d on the H nother typ storage ro Depth (m) 3.000 3.500 4.000 4.500 5.000	ead/Dischar e of contro uting calcu Flow (1/s) 3.4 3.7 3.9 4.1 4.3	ge relation 1 device o 1ations wi Depth (m) 7.000 7.500 8.000 8.500 9.000	ther th ll be Flow	(1/s) 5.0 5.2 5.4 5.5 5.7
F The hydrologic Hydro-Brake® O Hydro-Brake Op invalidated Depth (m) Fl 0.100 0.200 0.300 0.400 0.500 0.600	'lush-Flo™ al calcula ptimum as timum® be ow (1/s) 1.8 2.1 2.1 2.0 1.9 1.6	ations have specified utilised Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200	e been base . Should a then these Flow (1/s) 2.2 2.4 2.6 2.7 2.8 3.0	d on the H nother typ storage ro Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500	ead/Dischar e of contro uting calcu Flow (1/s) 3.4 3.7 3.9 4.1 4.3 4.5	ge relation 1 device o 1ations wi Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	ther th ll be Flow	(1/s) 5.0 5.2 5.4 5.5
F The hydrologic Hydro-Brake® O Hydro-Brake Op invalidated Depth (m) Fl 0.100 0.200 0.300 0.400 0.500	'lush-Flo™ al calcula ptimum as timum® be ow (1/s) 1.8 2.1 2.1 2.0 1.9	ations have specified utilised Depth (m) 1.200 1.400 1.600 1.800 2.000	e been base . Should a then these Flow (1/s) 2.2 2.4 2.6 2.7 2.8 3.0	d on the H nother typ storage ro Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	ead/Dischar e of contro uting calcu Flow (1/s) 3.4 3.7 3.9 4.1 4.3 4.5 4.7	ge relation 1 device o 1ations wi Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	ther th ll be Flow	(1/s) 5.0 5.2 5.4 5.5 5.7
F The hydrologic Hydro-Brake® O Hydro-Brake Op invalidated Depth (m) Fl 0.100 0.200 0.300 0.400 0.500 0.600 0.800	'lush-Flo™ al calcula ptimum as timum® be .ow (1/s) 1.8 2.1 2.1 2.0 1.9 1.6 1.9 2.1	ations have specified utilised Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.600	e been base . Should a then these Flow (1/s) 2.2 2.4 2.6 2.7 2.8 3.0 3.1 3.2	d on the H nother typ storage rc Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000 6.500	ead/Dischar e of contro uting calcu Flow (1/s) 3.4 3.7 3.9 4.1 4.3 4.5 4.7	ge relation l device of lations with Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	ther th ll be Flow	(1/s) 5.0 5.2 5.4 5.5 5.7
F The hydrologic Hydro-Brake® O Hydro-Brake Op invalidated Depth (m) Fl 0.100 0.200 0.300 0.400 0.500 0.600 0.800	'lush-Flo™ al calcula ptimum as timum® be .ow (1/s) 1.8 2.1 2.1 2.0 1.9 1.6 1.9 2.1	ations have specified utilised Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.600 anhole: Si	e been base . Should a then these Flow (1/s) 2.2 2.4 2.6 2.7 2.8 3.0 3.1 3.2	d on the H nother typ storage ro Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000 6.500	ead/Dischar e of contro uting calcu Flow (1/s) 3.4 3.7 3.9 4.1 4.3 4.5 4.7 4.9 Volume (m	ge relation l device of lations with Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	ther th ll be Flow	(1/s) 5.0 5.2 5.4 5.5 5.7
F The hydrologic Hydro-Brake® O Hydro-Brake Op invalidated Depth (m) Fl 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	<pre>'lush-Flo™ al calcula ptimum as timum® be ow (l/s)</pre>	ations have specified utilised Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.600 anhole: Si	e been base . Should a then these Flow (1/s) 2.2 2.4 2.6 2.7 2.8 3.0 3.1 3.2 8, DS/PN: Invert Level	d on the H nother typ storage ro Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000 6.500 S1.007, L (m) 26.8	ead/Dischar e of contro uting calcu Flow (1/s) 3.4 3.7 3.9 4.1 4.3 4.5 4.7 4.9 Volume (m	ge relation l device of lations with Depth (m) 7.000 7.500 8.000 8.000 9.000 9.500 3): 2.8	ther th ll be Flow	(1/s) 5.0 5.2 5.4 5.5 5.7
F The hydrologic Hydro-Brake® O Hydro-Brake Op invalidated Depth (m) Fl 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	<pre>'lush-Flo™ al calcula ptimum as timum® be ow (l/s)</pre>	ations have specified utilised Depth (m) 1.200 1.400 1.600 1.800 2.200 2.400 2.600 anhole: Si Flow (1/s) 3.0000	e been base . Should at then these Flow (1/s) 2.2 2.4 2.6 2.7 2.8 3.0 3.1 3.2 8, DS/PN: Invert Level Depth (m)	d on the H nother typ storage ro Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000 6.500 <u>S1.007,</u> L (m) 26.8 Flow (1/s) 3.0000	ead/Dischar e of contro uting calcu Flow (1/s) 3.4 3.7 3.9 4.1 4.3 4.5 4.7 4.9 Volume (m 66 Depth (m) 2.000	ge relation l device of lations with Depth (m) 7.000 7.500 8.000 8.500 9.500 9.500 3): 2.8 Flow (1/s)	ther th 11 be Flow	(1/s) 5.0 5.2 5.4 5.5 5.7
F The hydrologic Hydro-Brake® O Hydro-Brake Op invalidated Depth (m) Fl 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	'lush-Flo™ al calcula ptimum as timum® be ow (1/s) 1.8 2.1 2.0 1.9 1.6 1.9 2.1 Pump Ma epth (m) H 0.500	ations have specified utilised Depth (m) 1.200 1.400 1.600 1.800 2.200 2.400 2.600 anhole: Si Flow (1/s) 3.0000	e been base . Should at then these Flow (1/s) 2.2 2.4 2.6 2.7 2.8 3.0 3.1 3.2 8, DS/PN: Invert Level Depth (m) 1.500	d on the H nother typ storage ro Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000 6.500 <u>S1.007,</u> L (m) 26.8 Flow (1/s) 3.0000	ead/Dischar e of contro uting calcu Flow (1/s) 3.4 3.7 3.9 4.1 4.3 4.5 4.7 4.9 Volume (m 66 Depth (m) 2.000	ge relation l device of lations with Depth (m) 7.000 7.500 8.000 8.500 9.500 9.500 3): 2.8 Flow (1/s)	ther th 11 be Flow	(1/s) 5.0 5.2 5.4 5.5 5.7

RAB Consultants Ltd		Page 9
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Micro
Date 04/07/2022 11:46	Designed by Micro Drainage	Drainage
File 2977.MDX	Checked by	Diamage
Micro Drainage	Network 2020.1.3	
<u>Storage</u>	Structures for Storm	
<u>Complex Mar</u>	hole: S7, DS/PN: S1.006	
<u>Ce</u>	ellular Storage	
	rt Level (m) 27.176 Safety Factor 2.0 Base (m/hr) 0.00000 Porosity 0.95 Side (m/hr) 0.00000	
Depth (m) Area (m²) Inf. Ar	ea (m²) Depth (m) Area (m²) Inf. Area (m	n²)
0.000 750.0 0.914 750.0	750.0 0.915 0.0 750 750.0	0.0
Bic	-Retention Area	
Invert Level (m) Porosity Infiltration Coefficient Base (m/hr)	-	
Depth (m) Area (m²) Perime	ter (m) Depth (m) Area (m²) Perimeter (r	n)
0.000 225.0	70.000 1.200 225.0 70.00	00
<u>P</u>	orous Car Park	
Infiltration Coefficient Base Membrane Percolation (Max Percolation Safety Pc Invert Lev	mm/hr)1000Length (m)(1/s)97.5Slope (1:X)Factor2.0 Depression Storage (mm)prosity0.30Evaporation (mm/day)	26.0 13.5 150.0 5 3 60
©19	82-2020 Innovyze	

RAB Consultants Ltd		Page 10
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Mirro
Date 04/07/2022 11:46	Designed by Micro Drainage	Drainage
File 2977.MDX	Checked by	Diamage
Micro Drainage	Network 2020.1.3	

Manhole Headloss for Storm

PN	US/MH Name	US/MH Headloss
S1.000	S1	0.500
S1.001	S2	0.500
S1.002	s3	0.500
S2.000	S1a	0.500
S1.003	S4	0.500
s3.000	S2a	0.500
S1.004	S5	0.500
S1.005	S6	0.500
S1.006	s7	0.500
S1.007	S8	0.500
S1.008	S9	0.500

RAB Consulta	nts Ltd						Pa	age 11
Cathedral Ho	use						Γ	
Beacon Stree	t							
Lichfield W	S13 7AA							Airco
Date 04/07/2	022 11.46		Des	ianed	by Mic	ro Drainage	I	Aicro
)		-	-	.10 Diainage)rainage
File 2977.MD				cked b	=	_		
Aicro Draina	ge		Net	work 2	020.1.	3		
Summ	ary of Cr	itical Re	<u>sults b</u>	y Maxi	mum Le	vel (Rank 1)	for Sto	rm
	Areal Red	luction Fact		tion Cri) Addi		Flow - % of T	otal Flow (0.000
					MADD Fa	actor * 10m³/h		
		rt Level (r			_		ffiecient (
				-	per Pers	son per Day (l	/per/day) (0.000
FOULS	sewage per	hectare (1,	's) 0.000	J				
-		-				ls 0 Number of es 1 Number of		-
			nthetic	Rainfal	l Detai	<u>ls</u>		
		Rainfall				FE		
	FEH 1	Rainfall Ve			046000	201		
			ation GB . Type	3 303300	246823	TL 03500 4682 Poir		
		Cv (Su				0.85		
		Cv (Wi	,			0.85		
M	argin for	Flood Risk	-				300.0	
		Analy		-	5 Secon	d Increment (E		
			DTS St DVD St				ON	
		Tn	ertia St				ON OFF	
		11	CICIC DC	acus			011	
		Profile(s)				Summer	and Winter	<u>.</u>
	Duratior	n(s) (mins)				180, 240, 360		
			720, 90	60, 1440), 2160,	2880, 4320,		
Reti	urn Period	(s) (vears)					8640, 10080 100	
Reci		Change (%)					40	
US/MH			Climate			First (Y)	First (Z)	
PN Name	Storm	Period	Change	Surcl	narge	Flood	Overflow	Act.
S1.000 S1	15 Sum	mer 100	+40%	100/15	Summer			
s1.001 s2						100/15 Summer		
S1.002 S3	15 Sum	mer 100	+40%	100/15	Summer	100/15 Summer		
S2.000 S1a	15 Sum	mer 100	+40%	100/15	Summer			
S1.003 S4				100/15				
S3.000 S2a				100/15				
S1.004 S5				100/15				
				100/15				
S1.005 S6		+ 100	+40%	100/15	Summer			
S1.006 S7								
S1.006 S7	720 Win 10080 Win			100/15				

RAB Consultants Ltd		Page 12
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Micro
Date 04/07/2022 11:46	Designed by Micro Drainage	Drainage
File 2977.MDX	Checked by	Diamage
Micro Drainage	Network 2020.1.3	

PN	US/MH Name	Water Level (m)	Surcharged Depth (m)		Flow / Cap.	Overflow (l/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
s1.000	S1	31.286	0.685	0.000	0.58			36.9	FLOOD RISK	
S1.001	S2	31.162	1.125	0.135	0.81			64.9	FLOOD	1
S1.002	S3	31.063	1.200	0.199	0.99			99.5	FLOOD	1
S2.000	S1a	30.995	0.803	0.000	0.48			44.3	FLOOD RISK	
S1.003	S4	30.878	1.243	0.000	1.55			177.4	FLOOD RISK	
S3.000	S2a	30.073	0.723	0.000	1.07			42.6	SURCHARGED	
S1.004	S5	29.832	0.553	0.000	1.15			258.5	SURCHARGED	
S1.005	S6	28.413	0.160	0.000	1.11			297.5	SURCHARGED	
S1.006	s7	27.901	0.575	0.000	0.13		2361	2.1	SURCHARGED	
S1.007	S8	27.213	0.267	0.000	1.53			2.1	SURCHARGED	

AB Consultant:	s Ltd							Page	= IJ
athedral House	e								
eacon Street									
ichfield WS1	3 7AA							Mi	
ate 04/07/2022	2 11:46		Desi	gned by	Micro Dra	ainage			cro ainago
ile 2977.MDX			Chec	ked by				DIC	
icro Drainage			Netw	ork 2020	.1.3				
Summary	<u>7 of Critic</u>	<u>al Resu</u>	<u>ilts by</u>	Maximum	Level (F	<u>Rank 1)</u>	for	<u>Storm</u>	Water
US/MH		Return C	limate	First (X)	First (Y)	First (Z) Ove	rflow	
PN Name	Storm	Period (Change	Surcharge	Flood	Overflo	ow A	ct.	(m)
S1.008 S9 1	0080 Winter	100	+40%						28.848
US/M	Surcharged H Depth			Overflow	Half Drain Time	n Pipe Flow		Leve	əl
PN Name	-	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Excee	ded
S1.008 S	9 -0.107	0.000	0.18			2.1	OK	-	

RAB Consultants Ltd						Page	1
Cathedral House							
Beacon Street							
Lichfield WS13 7AA							
	<u> </u>		animad by	Miana Draz		— Mic	
Date 04/07/2022 12:0	J		esigned by	Micro Dra	Lhage	Dra	inage
File 2977.MDX			hecked by				nage
Micro Drainage		N	etwork 2020	.1.3			
<u>Summary of C</u> :	ritical R	<u>lesults</u>	by Maximum	Level (Ra	<u>ank 1) fo</u>	<u>r Storm</u>	
			lation Criter				
	duction Fa t Start (m		000 Addition				
	art Level		0 MAD.	D Factor *	et Coeffied	2	
Manhole Headloss							
Foul Sewage per			-	÷	1 . 1 .	1,	
Number of Input Hydrogr. Number of Online Cont.	-						2
	<u>:</u>	Syntheti	.c Rainfall De	tails			
	Rainfal				FEH		
FEH	Rainfall V				2013		
		ta Type	GB 503500 246	0823 TL 0350	Point		
		Summer)			0.850		
		Winter)			0.850		
Margin for			-			00.0	
	Ana.	-	mestep 2.5 Se Status	cond increm	ent (Exten	ON	
			Status			ON	
	:	Inertia				OFF	
	Profile(s	:)			Summer and	Winter	
Duratio		,	15, 30, 60, 13				
			960, 1440, 2				
					8640,	, 10080	
Return Period						100	
Climate	Change (%	5)				0	
US/MH	Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Water Level
PN Name Storm	Period		Surcharge	Flood	Overflow	Act.	(m)
01 000 01 15 0	100						20 400
S1.000 S1 15 Summ S1.001 S2 15 Summ		+0응 +0응	100/15 Summe:	r			30.486 30.291
S1.001 S2 15 Summ S1.002 S3 15 Summ			100/15 Summe: 100/15 Summe:				30.291
S2.000 S1a 15 Summ		+0%	_ , , , , , , , , , , , , , , , , , , ,	_			30.090
S1.003 S4 15 Summ			100/15 Summe:	r			30.008
S3.000 S2a 15 Summ			100/15 Summe				29.375
S1.004 S5 15 Summ	er 100	+0%					29.216
S1.005 S6 15 Summ	er 100	+0%					28.172
S1.006 S7 600 Winte			100/15 Summe:				27.668
S1.007 S8 2880 Winte	er 100	+0응	100/15 Summe	r			27.213
		©1982	-2020 Innov	VZE			
		UI JUZ	2020 111100	1 10			

RAB Consultants Ltd		Page 2
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Micro
Date 04/07/2022 12:00	Designed by Micro Drainage	Drainage
File 2977.MDX	Checked by	Diamage
Micro Drainage	Network 2020.1.3	

PN	US/MH Name	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
S1.000	S1	-0.115	0.000	0.48			30.4	OK	
S1.001	S2	0.254	0.000	0.70			56.2	SURCHARGED	
S1.002	s3	0.322	0.000	0.88			88.4	SURCHARGED	
S2.000	Sla	-0.102	0.000	0.38			35.2	OK	
S1.003	S4	0.373	0.000	1.35			153.7	SURCHARGED	
S3.000	S2a	0.025	0.000	0.86			34.2	SURCHARGED	
S1.004	s5	-0.063	0.000	0.98			219.4	OK	
S1.005	S6	-0.081	0.000	0.95			255.6	OK	
S1.006	s7	0.342	0.000	0.13		1429	2.1	SURCHARGED	
S1.007	S8	0.267	0.000	1.53			2.1	SURCHARGED	

RAB Consultants Ltd		Page 3
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Micco
Date 04/07/2022 12:00	Designed by Micro Drainage	Micro Drainage
File 2977.MDX	Checked by	Diamaye
Micro Drainage	Network 2020.1.3	
Summary of Critical Resul	ts by Maximum Level (Rank 1) for S	torm
PN Name Storm Period Cha	mate First (X) First (Y) First (Z) Over ange Surcharge Flood Overflow Ac	
S1.008 S9 2880 Winter 100	+0%	20.040
Surcharged Flooded US/MH Depth Volume D PN Name (m) (m³)	Half Drain Pipe Flow / Overflow Time Flow Cap. (l/s) (mins) (l/s) Status	Level Exceeded
S1.008 S9 -0.107 0.000	0.18 2.1 OK	
010	92 2020 Taparwas	
©19	82-2020 Innovyze	

RAB Consulta	ants I	Jtd								Pag	re 1
Cathedral Ho	ouse										
Beacon Stree	et										
Lichfield V	-	7 ^ ^									
							- 1			M	
Date 04/07/2	2022 1	2:02		De	esigne	ed by 1	Micro	Dra	inage		ainage
File 2977.MI	X			Cł	necked	d by					
Micro Draina	ige			Ne	etwor]	c 2020	.1.3			I	
Summ	ary o	f Crit	ical R	<u>esults</u>	by Ma	aximum	Level	<u>(R</u>	<u>ank 1) f</u>	or Storn	1
						Criteri					
	Area									l Flow 0.	
				ins)		MADI) Facto			torage 2.	
Manhala			Level		0	w por I	orcon			ecient 0. r/day) 0.	
				l/s) 0.0		ow per r	erson	per	Day (I/pe	1/uay) 0.	000
1 Out	uye	POT IIC		_, _, 0.0							
Number of Inp Number of O	-										-
			<u>,</u>	Syntheti	c Rain	fall De	<u>tails</u>				
			Rainfall						FEH		
		FEH Ra:	infall N		ab 500		000	005	2013		
					GB 503	500 246	823 TL	0350	00 46823		
				a Type					Point 0.850		
				Summer) Vinter)					0.850		
			01 (1	, incer,					0.000		
I	Margin	for Flo		Warning	-	2590	cond T	naror	ment (Exte	300.0	
			Alla	-	Status		cona i	nerei	Ment (BACC	ON	
					Status					ON	
]	Inertia :	Status					OFF	
	Dur		cofile(s s) (mins) 1				, 24	Summer an 0, 360, 4 4320, 576	80, 600, 0, 7200,	
									864	0, 10080	
Ret			(years							30	
	Cli	.mate Ch	ange (%)						40	
											Water
US/ME	I		Return	Climate	Firs	st (X)	First	(Y)	First (Z) Overflo	
PN Name		corm	Period	Change		harge	Flo		Overflow	-	(m)
S1.000 S1	15	Summer	30	+40%							30.489
s1.000 s1		Summer	30		30/15	Summer					30.394
s1.002 s3		Summer	30			Summer					30.291
S2.000 S1a		Summer	30			Summer					30.192
S1.003 S4		Summer	30			Summer					30.107
S3.000 S2a		Summer	30			Summer					29.446
S1.004 S5		Summer	30			Summer					29.283
s1.005 s6		Summer	30	+40%							28.177
S1.006 S7	720	Winter	30	+40%	30/15	Summer					27.686
~1 ~~~	7200	Summer	30	+40%	30/15	Summer					27.213
S1.007 S8	1200	0 0111110 1				0 411110 1					
S1.007 S8	7200					Innov					

RAB Consultants Ltd		Page 2
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Micro
Date 04/07/2022 12:02	Designed by Micro Drainage	Drainage
File 2977.MDX	Checked by	Diamage
Micro Drainage	Network 2020.1.3	

PN	US/MH Name	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
S1.000	S1	-0.112	0.000	0.50			32.0	OK	
S1.001	S2	0.357	0.000	0.72			57.7	SURCHARGED	
S1.002	s3	0.428	0.000	0.91			91.3	SURCHARGED	
S2.000	S1a	0.000	0.000	0.39			36.2	SURCHARGED	
S1.003	S4	0.472	0.000	1.38			157.4	SURCHARGED	
S3.000	S2a	0.096	0.000	0.88			35.0	SURCHARGED	
S1.004	S5	0.004	0.000	1.00			224.1	SURCHARGED	
S1.005	S6	-0.076	0.000	0.98			261.4	OK	
S1.006	s7	0.360	0.000	0.13		1488	2.1	SURCHARGED	
S1.007	S8	0.267	0.000	1.53			2.1	SURCHARGED	

RAB Consultants Ltd		Page 3
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Micco
Date 04/07/2022 12:02	Designed by Micro Drainage	Micro Drainage
File 2977.MDX	Checked by	Diamage
Micro Drainage	Network 2020.1.3	
Summary of Critical Resul	ts by Maximum Level (Rank 1) for S	torm
PN Name Storm Period Cha	mate First (X) First (Y) First (Z) Over ange Surcharge Flood Overflow Ac	t. (m)
S1.008 S9 7200 Summer 30	+40%	28.848
Surcharged Flooded US/MH Depth Volume H PN Name (m) (m³)	Half Drain Pipe Flow / Overflow Time Flow Cap. (l/s) (mins) (l/s) Status	Level Exceeded
S1.008 S9 -0.107 0.000	0.18 2.1 OK	
<u> </u>	82-2020 Innovyze	
	02 2020 IIII0VY2C	

	sultar	ts Ltd							P	age 1
Cathedra	al Hou	se							[
Beacon S	Street									
Lichfiel										
		22 12:0	1			d br	Micro D:			Micro
			±		2	-	MICLO D.	ainage		Drainag
File 297	-				hecked	-				Jianiag
licro Dr	rainac	e		N	etwork	2020	.1.3			
	<u>Summa</u>	ry of Cı	itical 1	<u>Results</u>	by Ma	ximum	Level	(Rank 1)	for Sto	orm
					lation (
									tal Flow	
			t Start (r art Level		0	MADI			Storage	
Мат	nhole 1					wperi			(per/day)	
			hectare			w per .	terbon pe	1 Day (1)	per/ day/	0.000
-	-	2 I								
	-		-							Diagrams Controls
				Syntheti	c Rainf	all De	tails_			
			Rainfal	l Model				FE	Н	
		FEH	Rainfall					201		
					GB 5035	00 246	823 TL 03	3500 4682		
				ta Type				Poin		
				Summer)				0.85		
			Cv (Winter)				0.85	U	
	Ma	rgin for	Flood Ris Ana	lysis Ti DTS	-	2.5 Se	cond Inc:	rement (E	300.0 xtended) ON ON	
				Inertia					OFF	
			Drofilo(-)				Cummor	and Winte	~
		Duratio	Profile(n(s) (min	s)				240, 360, , 4320, 5	480, 600 5760, 7200 5640, 1008	r r
	Retu	rn Period	(s) (year	s)				, c	3	
	1000		Change (0
										Water
			Poturn	Climate	First	(X)	Timet (N		(Z) Overfl	low Level
	US/MH		Recurn			- (/	First (I) First	(1) 010111	
PN	US/MH Name	Storm		Change	Surch		First (1 Flood) First Overfl		(m)
PN	Name		Period	-						
PN S1.000	Name S1	15 Summe	Period er 30	+0%						30.469
PN S1.000 S1.001	Name S1 S2	15 Summe 15 Summe	Period er 30 er 30	+0% +0%						30.469 29.907
PN S1.000 S1.001 S1.002	Name \$1 \$2 \$3	15 Summe 15 Summe 15 Summe	Period er 30 er 30 er 30	+0% +0% +0%						30.469 29.907 29.815
PN \$1.000 \$1.001 \$1.002 \$2.000	Name S1 S2 S3 S1a	15 Summe 15 Summe 15 Summe 15 Summe	Period er 30 er 30 er 30 er 30	+0% +0% +0% +0%	Surch	arge				30.469 29.907 29.815 30.049
PN S1.000 S1.001 S1.002 S2.000 S1.003	Name \$1 \$2 \$3 \$1a \$4	 Summe Summe Summe Summe Summe 	Period er 30	+0% +0% +0% +0% +0%		arge				30.469 29.907 29.815 30.049 29.698
PN \$1.000 \$1.001 \$1.002 \$2.000 \$1.003 \$3.000	Name S1 S2 S3 S1a S4 S2a	 Summe Summe Summe Summe Summe Summe Summe 	Period er 30	+0% +0% +0% +0% +0% +0%	Surch	arge				30.469 29.907 29.815 30.049 29.698 29.261
PN S1.000 S1.001 S1.002 S2.000 S1.003 S3.000 S1.004	Name \$1 \$2 \$3 \$1a \$4 \$2a \$5	 15 Summe 	Period ar 30	+0% +0% +0% +0% +0% +0% +0%	Surch	arge				30.469 29.907 29.815 30.049 29.698 29.261 29.161
PN S1.000 S1.001 S1.002 S2.000 S1.003 S3.000 S1.004 S1.005	Name S1 S2 S3 S1a S4 S2a S5 S6	 15 Summe 	Period ar 30	+0% +0% +0% +0% +0% +0% +0% +0%	Surch:	arge Summer				30.469 29.907 29.815 30.049 29.698 29.261 29.161 28.127
PN S1.000 S1.001 S1.002 S2.000 S1.003 S3.000 S1.004	Name \$1 \$2 \$3 \$1a \$4 \$2a \$5 \$6 \$7	 15 Summe 	Period ar 30 ar 30	+0% +0% +0% +0% +0% +0% +0% +0% +0%	Surch	Summer Summer				30.469 29.907 29.815 30.049 29.698 29.261
PN S1.000 S1.001 S1.002 S2.000 S1.003 S3.000 S1.004 S1.005 S1.006	Name \$1 \$2 \$3 \$1a \$4 \$2a \$5 \$6 \$7	 15 Summe 600 Winte 	Period ar 30 ar 30	+0% +0% +0% +0% +0% +0% +0% +0% +0%	Surch	Summer Summer				30.469 29.907 29.815 30.049 29.698 29.261 29.161 28.127 27.522

RAB Consultants Ltd		Page 2
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Micro
Date 04/07/2022 12:04	Designed by Micro Drainage	Drainage
File 2977.MDX	Checked by	Diamage
Micro Drainage	Network 2020.1.3	

PN	US/MH Name	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
S1.000	S1	-0.132	0.000	0.36			22.9	OK	
S1.001	S2	-0.130	0.000	0.60			48.1	OK	
S1.002	S3	-0.048	0.000	0.72			72.2	OK	
S2.000	S1a	-0.143	0.000	0.29			26.7	OK	
S1.003	S4	0.063	0.000	1.08			123.4	SURCHARGED	
S3.000	S2a	-0.089	0.000	0.66			26.3	OK	
S1.004	S5	-0.118	0.000	0.79			176.5	OK	
S1.005	S6	-0.126	0.000	0.76			204.6	OK	
S1.006	s7	0.196	0.000	0.13		1022	2.1	SURCHARGED	
S1.007	S8	0.267	0.000	1.53			2.1	SURCHARGED	

RAB Consultants Ltd		Page 3
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Micco
Date 04/07/2022 12:04	Designed by Micro Drainage	– Micro Drainage
File 2977.MDX	Checked by	Diginarie
Micro Drainage	Network 2020.1.3	
Summary of Critical Resul	ts by Maximum Level (Rank 1) for S	Storm
		Water
US/MH Return Clim PN Name Storm Period Cha	nate First (X) First (Y) First (Z) Over nge Surcharge Flood Overflow Ac	
S1.008 S9 360 Winter 30	+0%	28.848
Surcharged Flooded US/MH Depth Volume B	Half Drain Pipe Clow / Overflow Time Flow	Level
_	Cap. (1/s) (mins) (1/s) Status	
s1.008 s9 -0.107 0.000	0.18 2.1 OK	
©19	82-2020 Innovyze	

Cathedra	ultan	ts Ltd						Page	1
acheurd.	l Hou:	se							
Beacon S [.]	treet								
ichfiel	d WS	13 7aa							
				D		M'		Mic	
		22 12:05			esigned by	Micro Dra	inage	D Ca	inag
file 297	7.MDX			Cł	necked by				ii iacj
licro Dra	ainage	9		Ne	etwork 2020	0.1.3			
<u>c</u>	Summai	ry of Cri	tical Re	sults	by Maximum	<u>Level (F</u>	ank 1) fo	or Storm	
				-	ation Criter				
					00 Additic				
			Start (min			D Factor *		2	
Man	hole "		t Level (1 eff (Globa		0 00 Flow per		Let Coeffie		
		wage per h			-	rerson ber	pay (r/her	,uay) 0.00	
1	00			,					
	-				Offline Con torage Struc				-
					c Rainfall D	etails_			
			Rainfall				FEH		
		FEH Ra	ainfall Ve		CD E02500 04		2013		
					GB 503500 24	oo∠s TL 035	00 46823 Point		
			Data Cv (Su	a Type			Point 0.850		
			Cv (St Cv (Wi				0.850		
			(11-	,					
	Maı	rgin for Fi		ysis Tin DTS S	nestep 2.5 S Status	econd Incre		ON	
			Tr	DVD S Nertia S	Status			ON OFF	
			μŢ	lertia :	SLALUS			OFF	
							Summer and	Winter	
		P	rofile(s)						
			()	1	5, 30, 60, 1 960, 1440, 2		4320, 5760		
	Retur		s) (mins)	1 720,			4320, 5760	, 7200,	
	Retur	Duration(s) (mins)) (years)	1 720,			4320, 5760	, 7200, , 10080	
	Retur	Duration(n Period(s	s) (mins)) (years)	1 720,			4320, 5760	, 7200, , 10080 2	Water
Ţ	Retur US/MH	Duration(n Period(s	s) (mins)) (years)	1 720,		160, 2880,	4320, 5760	, 7200, , 10080 2 0	Water Level
		Duration(n Period(s	s) (mins)) (years) hange (%)	1 720, limate	960, 1440, 2	160, 2880,	4320, 5760 8640	, 7200, , 10080 2 0	
PN	US/MH Name	Duration(n Period(s Climate C Storm	s) (mins)) (years) hange (%) Return C Period C	1 720, limate Change	960, 1440, 2 First (X)	160, 2880, First (Y)	4320, 5760 8640 First (Z)	, 7200, , 10080 2 0 Overflow Act.	Level (m)
PN S1.000	US/MH Name S1	Duration(n Period(s Climate C Storm 15 Summer	s) (mins)) (years) hange (%) Return C Period C 2	1 720, limate Change +0%	960, 1440, 2 First (X)	160, 2880, First (Y)	4320, 5760 8640 First (Z)	, 7200, , 10080 2 0 Overflow Act.	Level (m) 30.436
PN S1.000 S1.001	US/MH Name S1 S2	Duration(n Period(s Climate C Storm 15 Summer 15 Summer	s) (mins)) (years) hange (%) Return C Period C 2 2	1 720, limate Change +0% +0%	960, 1440, 2 First (X)	160, 2880, First (Y)	4320, 5760 8640 First (Z)	, 7200, , 10080 2 0 Overflow Act.	Level (m) 30.436 29.836
PN S1.000 S1.001 S1.002	US/MH Name S1 S2 S3	Duration(n Period(s Climate C Storm 15 Summer 15 Summer 15 Summer	s) (mins)) (years) hange (%) Return C Period C 2 2 2 2	1 720, limate Change +0% +0% +0%	960, 1440, 2 First (X)	160, 2880, First (Y)	4320, 5760 8640 First (Z)	, 7200, , 10080 2 0 Overflow Act.	Level (m) 30.436 29.836 29.672
PN S1.000 S1.001 S1.002 S2.000	US/MH Name S1 S2 S3 S1a	Duration(n Period(s Climate C Storm 15 Summer 15 Summer 15 Summer 15 Summer	s) (mins)) (years) hange (%) Return C Period C 2 2 2 2 2 2	1 720, limate Change +0% +0% +0% +0%	960, 1440, 2 First (X)	160, 2880, First (Y)	4320, 5760 8640 First (Z)	, 7200, , 10080 2 0 Overflow Act.	Level (m) 30.436 29.836 29.672 30.020
PN S1.000 S1.001 S1.002 S2.000 S1.003	US/MH Name S1 S2 S3 S1a S4	Duration(n Period(s Climate C Storm 15 Summer 15 Summer 15 Summer 15 Summer 15 Summer	s) (mins)) (years) hange (%) Return C Period C 2 2 2 2 2 2 2 2 2 2	1 720, limate Change +0% +0% +0% +0% +0%	960, 1440, 2 First (X)	160, 2880, First (Y)	4320, 5760 8640 First (Z)	, 7200, , 10080 2 0 Overflow Act.	Level (m) 30.436 29.836 29.672 30.020 29.474
PN \$1.000 \$1.001 \$1.002 \$2.000 \$1.003 \$3.000	US/MH Name S1 S2 S3 S1a S4 S2a	Duration(n Period(s Climate C Storm 15 Summer 15 Summer 15 Summer 15 Summer 15 Summer 15 Summer	s) (mins)) (years) hange (%) Return C Period C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 720, limate Change +0% +0% +0% +0% +0% +0%	960, 1440, 2 First (X)	160, 2880, First (Y)	4320, 5760 8640 First (Z)	, 7200, , 10080 2 0 Overflow Act.	Level (m) 30.436 29.836 29.672 30.020 29.474 29.209
PN S1.000 S1.001 S1.002 S2.000 S1.003 S3.000 S1.004	US/MH Name S1 S2 S3 S1a S4 S2a S5	Duration(n Period(s Climate C Storm 15 Summer 15 Summer 15 Summer 15 Summer 15 Summer 15 Summer 15 Summer	s) (mins)) (years) hange (%) Return C Period C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 720, limate Change +0% +0% +0% +0% +0% +0% +0% +0%	960, 1440, 2 First (X)	160, 2880, First (Y)	4320, 5760 8640 First (Z)	, 7200, , 10080 2 0 Overflow Act.	Level (m) 30.436 29.836 29.672 30.020 29.474 29.209 29.050
PN S1.000 S1.001 S1.002 S2.000 S1.003 S3.000 S1.004 S1.005	US/MH Name S1 S2 S3 S1a S4 S2a S5 S6	Duration(n Period(s Climate C Storm 15 Summer 15 Summer 15 Summer 15 Summer 15 Summer 15 Summer 15 Summer 15 Summer	s) (mins)) (years) hange (%) Return C Period C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 720, 1 1 1 1 1 1 720, 1 7 20, 1 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,	960, 1440, 2 First (X) Surcharge	160, 2880, First (Y) Flood	4320, 5760 8640 First (Z)	, 7200, , 10080 2 0 Overflow Act.	Level (m) 30.436 29.836 29.672 30.020 29.474 29.209 29.050 28.020
PN \$1.000 \$1.001 \$1.002 \$2.000 \$1.003 \$3.000 \$1.004	US/MH Name S1 S2 S3 S1a S4 S2a S5 S6 S7	Duration(n Period(s Climate C Storm 15 Summer 15 Summer 15 Summer 15 Summer 15 Summer 15 Summer 15 Summer	s) (mins)) (years) hange (%) Return C Period C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 720, 1 1 1 1 1 1 720, 1 7 20, 1 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,	960, 1440, 2 First (X) Surcharge 2/240 Summer	160, 2880, First (Y) Flood	4320, 5760 8640 First (Z)	, 7200, , 10080 2 0 Overflow Act.	Level (m) 30.436 29.836 29.672 30.020 29.474 29.209
PN \$1.000 \$1.001 \$1.002 \$2.000 \$1.003 \$3.000 \$1.004 \$1.005 \$1.006	US/MH Name S1 S2 S3 S1a S4 S2a S5 S6 S7	Duration(n Period(s Climate C Storm 15 Summer 15 Summer 15 Summer 15 Summer 15 Summer 15 Summer 15 Summer 15 Summer 15 Summer 15 Summer	s) (mins)) (years) hange (%) Return C Period C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 720, 1 1 1 1 1 1 720, 1 7 20, 1 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,	960, 1440, 2 First (X) Surcharge	160, 2880, First (Y) Flood	4320, 5760 8640 First (Z)	, 7200, , 10080 2 0 Overflow Act.	Level (m) 30.436 29.836 29.672 30.020 29.474 29.209 29.050 28.020 27.343

RAB Consultants Ltd		Page 2
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Micro
Date 04/07/2022 12:05	Designed by Micro Drainage	Drainage
File 2977.MDX	Checked by	Diamage
Micro Drainage	Network 2020.1.3	

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
S1.000	S1	-0.165	0.000	0.16			10.1	OK	
S1.001	S2	-0.201	0.000	0.23			18.5	OK	
S1.002	S3	-0.191	0.000	0.28			28.4	OK	
S2.000	S1a	-0.172	0.000	0.13			11.8	OK	
S1.003	S4	-0.161	0.000	0.44			49.9	OK	
S3.000	S2a	-0.141	0.000	0.29			11.6	OK	
S1.004	S5	-0.229	0.000	0.32			70.7	OK	
S1.005	S6	-0.233	0.000	0.30			80.9	OK	
S1.006	s7	0.017	0.000	0.12		641	1.9	SURCHARGED	
S1.007	S8	0.240	0.000	1.41			1.9	SURCHARGED	

RAB Consultants Ltd	Page 3
Cathedral House	
Beacon Street	
Lichfield WS13 7AA	Misso
Date 04/07/2022 12:05 Designed by Micro D	Prainage MILIO
File 2977.MDX Checked by	Micro Drainage
Micro Drainage Network 2020.1.3	
Summary of Critical Results by Maximum Level	(Rank 1) for Storm
	Water
US/MH Return Climate First (X) First (Y)	First (Z) Overflow Level
PN Name Storm Period Change Surcharge Flood	Overflow Act. (m)
S1.008 S9 600 Summer 2 +0%	28.846
Surcharged Flooded Half Dra	ain Pipe
US/MH Depth Volume Flow / Overflow Time	
PN Name (m) (m^3) Cap. $(1/s)$ (mins)	(1/s) Status Exceeded
S1.008 S9 -0.109 0.000 0.17	1.9 OK
©1982-2020 Innovyze	

RAB Consultants Ltd		Page 1
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Micro
Date 14/06/2022 12:16	Designed by Micro Drainage	Drainage
File	Checked by	Diamage
Micro Drainage	Source Control 2020.1.3	

ICP SUDS Mean Annual Flood

Input

Return Period (years)100 SAAR (mm)550Urban0.000Area (ha)1.000Soil0.450 Region Number Region5

Results 1/s

QBAR Rural 3.3 QBAR Urban 3.3 Q100 years 11.8 Q1 year 2.9 Q30 years 8.0 Q100 years 11.8

RAB Consultants Ltd		Page 1
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Micro
Date 04/07/2022 11:40	Designed by Micro Drainage	Drainage
File 2977.MDX	Checked by	Diamage
Micro Drainage	Network 2020.1.3	

Area Summary for Storm

Pipe Number		PIMP Name	PIMP (%)	Gross Area (ha)	Imp. Area (ha)	Pipe Total (ha)
1.000	_	-	100	0.060	0.060	0.060
1.001	-	-	100	0.060	0.060	0.060
1.002	-	-	100	0.070	0.070	0.070
2.000	-	-	100	0.080	0.080	0.080
1.003	-	-	100	0.080	0.080	0.080
3.000	-	-	100	0.080	0.080	0.080
1.004	-	-	100	0.090	0.090	0.090
1.005	-	-	100	0.090	0.090	0.090
1.006	-	-	100	0.090	0.090	0.090
1.007	-	-	100	0.000	0.000	0.000
1.008	-	-	100	0.000	0.000	0.000
				Total	Total	Total
				0.700	0.700	0.700

RAB Cons								P	age 2
Cathedra	l Hou	se							
Beacon S	treet								
Lichfiel	d WS	13 7AA							Aicco
Date 04/	07/20	22 11:40		Des	igned	by Mic	ro Drainage		Micro
file 297					cked b	-	10 21a1nag		Drainag
	-				work 2	-	2		J
Micro Dr	ainag	e		Net	WORK Z	020.1.	3		
	<u>Summa</u>	ry of Cr	itical Re	<u>esults b</u>	y Maxin	<u>mum Le</u>	vel (Rank)	l) for Sto	rm
					tion Cri				
							Flow - % of actor * 10m³/		
			rt Level (MADD FC		effiecient	
Mar	nhole H					er Pers	son per Day (
			hectare (l		-				
						_	.		
	-		-				s 0 Number o		-
number	or onl	Line Contr	UIS Z NUMD	er or sto	Jiaye St	ructure	es 1 Number o	r redi Time	CONCLOIS
			S	ynthetic	Rainfall	l Detai	<u>ls</u>		
			Rainfall					FEH	
		FEH H	Rainfall Ve					013	
					3 503500	246823	TL 03500 468		
				a Type ummer)				int 850	
			Cv (U	,				850	
				,					
	Ma	rgin for H	Flood Risk	-				300.0	
			Analy	-	-	5 Secon	d Increment		
				DTS St				ON	
			T,	DVD St nertia St				ON OFF	
			11	leitia St	acus			OFF	
			Profile(s)				Summe	r and Winte	r
		Duration	(s) (mins)				180, 240, 36		
				720, 9	60, 1440	, 2160,	2880, 4320,		
	Patin	rn Period(s) (years)					8640, 1008 10	
	itecu.		Change (%)					4	
			<u> </u>						
	US/MH		Return	Climate	First	: (X)	First (Y)	First (Z)	Overflow
PN	Name	Storm	Period	Change	Surch	arge	Flood	Overflow	Act.
S1.000	S1	15 Sum	mer 100	+40%	100/15	Summer			
S1.000	S1 S2	15 Sum					100/15 Summe	er	
S1.002	S3	15 Sum	mer 100	+40%	100/15	Summer	100/15 Summe	er	
S2.000	Sla	15 Sum	mer 100	+40%	100/15	Summer	100/15 Summe	er	
S1.003	S4	15 Sum			100/15				
S3.000	S2a	15 Sum			100/15				
S1.004	S5	15 Sum			100/15				
S1.005	S6	15 Sum			100/15				
S1.006 S1.007	S7	960 Win 10080 Win			100/15 100/15				
DT.007	50	TOOOD WILL	COT IOO	T H U O	T00/TJ	Summer			

RAB Consultants Ltd		Page 3
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Micro
Date 04/07/2022 11:40	Designed by Micro Drainage	Drainage
File 2977.MDX	Checked by	Diamage
Micro Drainage	Network 2020.1.3	

PN	US/MH Name	Water Level (m)	2	Flooded Volume (m³)	Flow / Cap.	Overflow (l/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
S1.000	S1	31.312	0.711	0.000	0.58			37.0	FLOOD RISK	
S1.001	S2	31.163	1.126	0.867	0.88			70.4	FLOOD	1
S1.002	S3	31.065	1.202	2.037	0.94			95.3	FLOOD	1
S2.000	S1a	31.092	0.900	0.434	0.55			51.4	FLOOD	1
S1.003	S4	30.953	1.318	0.000	1.53			174.7	FLOOD RISK	
S3.000	S2a	30.341	0.991	0.000	1.24			49.2	FLOOD RISK	
S1.004	S5	30.018	0.739	0.000	1.19			266.3	SURCHARGED	
S1.005	S6	28.508	0.255	0.000	1.17			312.7	SURCHARGED	
S1.006	s7	27.974	0.648	0.000	0.13		2619	2.1	SURCHARGED	
S1.007	S8	27.213	0.267	0.000	1.53			2.1	SURCHARGED	

RAB Consultants L	td			Page 4
Cathedral House				
Beacon Street				
Lichfield WS13 7	'AA			Micco
Date 04/07/2022 1	1:40	Designed by M	licro Drainage	— Micro Drainage
File 2977.MDX		Checked by		Diamage
Micro Drainage		Network 2020.	1.3	
<u>Summary o</u>	<u>f Critical Resul</u>	ts by Maximum	Level (Rank 1) fc	o <u>r Storm</u>
US/MH PN Name S		mate First (X) F ange Surcharge	irst (Y) First (Z) (Flood Overflow	Water Overflow Level Act. (m)
S1.008 S9 8640	0 Winter 100	+40%		28.848
S US/MH PN Name	Surcharged Flooded Depth Volume I (m) (m³)	F Flow / Overflow Cap. (l/s)	Half Drain Pipe Time Flow (mins) (l/s) Sta	Level tus Exceeded
S1.008 S9	-0.107 0.000	0.18	2.1	OK
	©19	82-2020 Innovy	ze	

Pre-Planning Assessment Report

Chantry Avenue

InFlow Reference: PPE-0150503

Assessment Type: Used Water

Report published: 11/07/2022

Thank you for submitting a pre-planning enquiry.

This has been produced for ARAGON LAND AND PLANNING LTD.

Your reference number is **PPE-0150503**.

This report can be submitted as a drainage strategy for the development should it seek planning permission.

If you have any questions upon receipt of this report, you can submit a further question via InFlow. Alternatively, please contact the Planning & Capacity team on **07929 786 955** or email planningliaison@anglianwater.co.uk

Section 1 - Proposed development

The response within this report has been based on the following information which was submitted as part of your application:

List of planned developments				
Type of development	No. Of units			
Dwellings	43			

The anticipated residential build rate is:

Year	Y1
Build rate	43

Development type:	Brownfield
Planning application status:	Unknown
Site grid reference number:	TL0348946814

The comments contained within this report relate to the public water mains and sewers indicated on our records. Your attention is drawn to the disclaimer in the useful information section of this report.

Section 2 - Assets affected

Our records indicate that we have the following types of assets within or overlapping the boundary of your development site as listed in the table below.

Additionally, it is highly recommended that you carry out a thorough investigation of your proposed working area to establish whether any unmapped public or private sewers and lateral drains are in existence. We are unable to permit development either over or within the easement strip without our prior consent. The extent of the easement is provided in the table below. Please be aware that the existing water mains/public sewers should be located in highway or open space and not in private gardens. This is to ensure available access for any future maintenance and repair and this should be taken into consideration when planning your site layout.

Water and Used water easement information				
Asset type	Pipe size (mm)	Total easement required (m)		
Sewer mains	300	3.00 m either side of the centre line		
Sewer mains	600	3.50 m either side of the centre line		
Sewer mains	150	3.00 m either side of the centre line		

If it is not possible to avoid our assets then these may need to be diverted in accordance with Section 185 of the Water Industry Act (1991). You will need to make a formal application if you would like a diversion to be considered.

Due to the private sewer transfer in October 2011 many newly adopted public used water assets and their history are not indicated on our records. You also need to be aware that your development site may contain private water mains, drains or other assets not shown on our records. These are private assets and not the responsibility of Anglian Water but that of the landowner.

Section 3 - Water recycling services

In examining the used water system we assess the ability for your site to connect to the public sewerage network without causing a detriment to the operation of the system. We also assess the receiving water recycling centre and determine whether the water recycling centre can cope with the increased flow and effluent quality arising from your development.

Water recycling centre

The foul drainage from the proposed development is in the catchment of Bedford Water Recycling Centre, which currently does not have capacity to treat the flows from your development site.

Anglian Water are obligated to accept the foul flows from your development with the benefit of planning consent and would therefore take the necessary steps to ensure that there is sufficient treatment capacity should the planning authority grant planning permission.

Used water network

Our assessment has been based on development flows connecting to the nearest foul water sewer of the same size or greater pipe diameter to that required to drain the site. The infrastructure to convey foul water flows to the receiving sewerage network is assumed to be the responsibility of the developer. Conveyance to the connection point is considered as Onsite Work and includes all work carried out upstream from of the point of connection, including making the connection to our existing network. This connection point has been determined in reference to the calculated discharge flow and on this basis, a 150mm internal diameter pipe is required to drain the development site. The nearest practicable connection is to the 150mm diameter sewer at manhole MH4801 in The Silver Birches at National Grid Reference NGR TL 03493 46865. Anglian Water has assessed the impact of gravity flows from the planned development to the public foul sewerage network. We can confirm that this is acceptable as the foul sewerage system, at present, has available capacity for your site. Please note that Anglian Water will request a suitably worded condition at planning application stage to ensure this strategy is implemented to mitigate the risk of flooding.

It is assumed that the developer will provide the necessary infrastructure to convey flows from the site to the network. Consequently, this report does not include any costs for the conveyance of flows.

Surface water disposal

In principle, your proposed method of surface water disposal is acceptable to Anglian Water. It is our understanding that the evidence to confirm compliance with the surface water hierarchy is not available. Once the evidence has been confirmed, then a connection point may be made to manhole MH5751 in the east corner of the site at NGR TL 03550 46755 at a rate of 151/s. Our assessment has been based on development flows connecting to the nearest surface water sewer of the same size or greater pipe diameter. It is your responsibility to provide the evidence to confirm that all alternative methods of surface water disposal have been explored and these will be required before your connection can be agreed. This is subject to satisfactory evidence which shows the surface water management hierarchy as outlined in Building Regulations Part H has been explored. This would encompass the results from the site specific infiltration testing and/or confirmation that the flows cannot be discharged to a watercourse. Anglian Water's surface water policy follows the Surface Water hierarchy, outlined in Part H of the Building Regulations. Should your assumptions or evidence change then an alternative solution, connection point or flow rate may be required. You are therefore advised to update Anglian Water with the key supporting evidence at your earliest convenience.

As you may be aware, Anglian Water will consider the adoption of SuDs provided that they meet the criteria outline in our SuDs adoption manual. This can be found on our website. We will adopt features located in public open space that are designed and constructed, in conjunction with the Local Authority and Lead Local Flood Authority (LLFA), to the criteria within our SuDs adoption manual. Specifically, developers must be able to demonstrate:

- 1. Effective upstream source control,
- 2. Effective exceedance design, and
- 3. Effective maintenance schedule demonstrating than the assets can be maintained both now and in the future with adequate access.

If you wish to look at the adoption of any SuDs then an expression of interest form can be found on our website

Trade Effluent

We note that you do not have any trade effluent requirements. Should this be required in the future you will need our written formal consent. This is in accordance with Section 118 of the Water Industry Act (1991).

Used Water Budget Costs

Your development site will be required to pay an Infrastructure charge for each new property connecting to the public water and sewerage network that benefits from Full planning permission. The infrastructure charge replaces the zonal charge as previously identified.

You will be required to pay an infrastructure charge upon connection for each new plot on your development site. The infrastructure charge are types of charges set out in Section 146(2) of the Water Industry Act 1991.

The charge should be paid by anyone who wishes to build or develop a property and is payable upon request of connection.

• The Infrastructure Charge is based on the cost of any reinforcement and upgrades to our existing network ("Network Reinforcements"), whether designed to address strategic or local capacity issues. For more information on our Infrastructure Charge, please see the 'Useful Information' section of this report.

Infrastructure charges are raised on a standard basis of one charge per new connection (one for water and one for sewerage).

The Water Recycling Infrastructure charge for your dwellings is:

Infrastructure charge	Number of units	Total
£ 490	43	£21,070.00

Please note that you should also budget for infrastructure charges on non-household premises where applicable and these will be calculated according to the number and type of water fittings in the premises. This is called the "relevant multiplier" method of calculating the charge and the relevant multiplier will be applied to the figures set out in our 2022-23 Developer Charging Arrangements to arrive at the amount payable. Details of the relevant multiplier for each fitting can be found on our website.

Figure 1: Showing your water recycling foul point of connection

Figure 2: Showing your water recycling surface water point of connection

Section 5 - Useful information

Water Industry Act – Key used water sections

Section 98:

This provides you with the right to requisition a new public sewer. The new public sewer can be constructed by Anglian Water on your behalf. Alternatively, you can construct the sewer yourself under section 30 of the Anglian Water Authority Act 1977.

Section 102:

This provides you with the right to have an existing sewerage asset vested by us. It is your responsibility to bring the infrastructure to an adoptable condition ahead of the asset being vested.

Section 104:

This provides you with the right to have a design technically vetted and an agreement reached that will see us adopt your assets following their satisfactory construction and connection to the public sewer.

Section 106:

This provides you with the right to have your constructed sewer connected to the public sewer.

Section 185

This provides you with the right to have a public sewerage asset diverted.

Details on how to make a formal application for a new sewer, new connection or diversion are available on our website or via our Development Services team on **0345 60 66 087**.

Sustainable drainage systems

Many existing urban drainage systems can cause problems of flooding, pollution or damage to the environment and are not resilient to climate change in the long term. .

Our preferred method of surface water disposal is through the use of Sustainable Drainage Systems or SuDS.

SuDS are a range of techniques that aim to mimic the way surface water drains in natural systems within urban areas. For more information on SuDS, please visit our website

We recommend that you contact the Local Authority and Lead Local Flood Authority (LLFA) for your site to discuss your application.

Private sewer transfers

Sewers and lateral drains connected to the public sewer on the 1 July 2011 transferred into Water Company ownership on the 1 October 2011. This follows the implementation of the Floods and Water Management Act (FWMA). This included sewers and lateral drains that were subject to an existing Section 104 Adoption Agreement and those that were not. There were exemptions and the main non-transferable assets were as follows:

Surface water sewers and lateral drains that do not discharge to the public sewer, e.g. those that discharged to a watercourse.

Foul sewers and lateral drains that discharged to a privately owned sewage treatment/collection facility.

Pumping stations and rising mains will transfer between 1 October 2011 and 1 October 2016.

The implementation of Section 42 of the FWMA will ensure that future private sewers will not be created. It is anticipated that all new sewer applications will need to have an approved section 104 application ahead of a section 106 connection.

It is anticipated that all new sewer applications will need to have an approved Section104 application ahead of a Section 106 connection

Encroachment

Anglian Water operates a risk based approach to development encroaching close to our used water infrastructure. We assess the issue of encroachment if you are planning to build within 400 metres of a water recycling centre or, within 15 metres to 100 metres of a pumping station. We have more information available on our website

Locating our assets

Maps detailing the location of our water and used water infrastructure including both underground assets and above ground assets such as pumping stations and recycling centres are available from digdat

All requests from members of the public or non-statutory bodies for maps showing the location of our assets will be subject to an appropriate administrative charge.

We have more information on our website

Charging arrangements

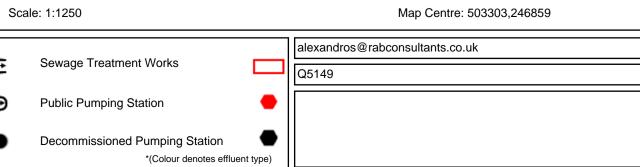
Our charging arrangements and summary for this year's water and used water connection and infrastructure charges can be found on our website

Section 6 - Disclaimer

The information provided in this report is based on data currently held by Anglian Water Services Limited ('Anglian Water') or provided by a third party. Accordingly, the information in this report is provided with no guarantee of accuracy, timeliness, completeness and is without indemnity or warranty of any kind (express or implied).

This report should not be considered in isolation and does not nullify the need for the enquirer to make additional appropriate searches, inspections and enquiries. Anglian Water supports the plan led approach to sustainable development that is set out in the National Planning Policy Framework ('NPPF') and any infrastructure needs identified in this report must be considered in the context of current, adopted and/or emerging local plans. Where local plans are absent, silent or have expired these needs should be considered against the definition of sustainability holistically as set out in the NPPF.

Whilst the information in this report is based on the presumption that proposed development obtains planning permission, nothing in this report confirms that planning permission will be granted or that Anglian Water will be bound to carry out the works/proposals contained within this report.


No liability whatsoever, including liability for negligence is accepted by Anglian Water or its partners, employees or agents, for any error or omission, or for the results obtained from the use of this report and/or its content.

Furthermore, in no event will any of those parties be liable to the applicant or any third party for any decision made or action taken as a result of reliance on this report.

This report is valid from the date issued and the enquirer is advised to resubmit their request for an up to date report should there be a delay in submitting any subsequent application for water supply/sewer connection(s). Our pre-planning reports are valid for 12 months, however please note Anglian Water cannot reserve capacity and available capacity in our network can be reduced at any time due to increased requirements from existing businesses and houses as well as from new housing and new commercial developments.

(c) Crown copyright and database rights 2022 Ordnance Survey 100022432 Date: 06/06/2	2		Sca	ale: 1:1250
carrying out any works. The actual position of all apparatus MUST be established by trial holes. No liability whatsoever, including liability for negligence, is accepted by Anglian Water for any error or inaccuracy or omission, including the failure to accurately record, or record at all, the location of any water main, discharge pipe, sewer or disposal main or any item of apparatus. This information is valid for the date printed. This plan is produced by Anglian Water Services Limited (c) Crown copyright and database rights 2022 Ordnance Survey 100022432. This map is to be used for the purposes of viewing the location of Anglian Water plan only. Any other uses of the map data or further copies is not permitted. This notice is not intended to exclude or restrict liability for death or personal injury resulting from negligence.	Surface Sewer Combined Sewer	 Outfall* Inlet* Manhole*	€ ∋	Sewage Public P Decomr

Data updated: 30/04/22

Our Ref: 870516 - 1

Wastewater Plan A1

wanhole Refe	rence Easting	Northing	Liquid Typ	be Cover Lev	vel Invert Leve	I Depth to Inver
2902	503280	246907	С	-	-	-
903	503280	246918	С	-	-	-
0000	503054	247013	F	-	-	-
0001	503054	247000	F	-	-	-
)102	503006	247123	F	34.65	32.38	2.27
0103	503079	247100	F	34.69	33.56	1.13
)104	503001	247101	F	34.78	32.36	2.42
0700	503030	246781	F	-	-	-
)801)802	503015 503015	246802 246812	F F	34.91	31.95	2.96
)802	503037	246802	F	-	-	-
)803	503060	246807	F		_	_
)805	503071	246818	F			-
)806	503057	246846	F	-	-	-
0807	503077	246876	F	-	-	-
0808	503059	246877	F	-	-	-
0809	503013	246874	F	-	-	-
0810	503085	246814	F	-	-	-
)811	503091	246815	F	-	-	-
)812	503095	246805	F	-	-	-
)813	503097	246893	F	-	-	-
)900	503076	246903	F	-	-	-
0901	503065	246934	F	-	-	-
0902	503067	246973	F	-	-	-
)903	503018	246904	F	-	-	-
)904	503009	246936	F	-	-	-
001	503150	247005	F	35.06	32.57	2.49
101	503105	247156	F	34.67	33.48	1.19
102	503120	247109	F	34.73	32.8	1.93
103	503108	247163	F	-	-	-
104	503119	247157	F	•	•	•
501	503191	246563	F	29.19	27.45	1.74
502	503194	246558	F	29.11	27.3	1.81
503	503159	246537	F	29.31	27.53	1.78
1601	503111	246624	F	29.75	27.9	1.85
700	503159	246738	F	-	•	-
1801	503190	246885	F	32.88	29.39	3.49
803	503102	246859	F	34.39	32.16	2.23
804	503137	246877	F	-	-	-
805	503177	246900	F	-	-	-
806	503179	246890	F	-	-	-
807	503133	246887	F	-	-	-
808 809	503133	246899	F F	-	-	-
900	503115 503184	246895 246903	F	- 33.48	- 32.42	- 1.06
901	503167	246929	F	-	-	-
2001	503216	240929	F	- 34.59	33.18	1.41
2002	503210	247055	F	34.63	32.87	1.76
2003	503234	247005	F	-	-	-
2004	503220	247002	F	_	-	
2101	503200	247127	F	34.51	32.96	1.55
2102	503226	247134	F	34.37	32.86	1.51
2500	503270	246591	F	29.14	27.29	1.85
2600	503282	246695	F	30.01	27.03	2.98
2601	503272	246683	F	29.16	26.99	2.17
2701	503247	246738	F	29.64	28.05	1.59
2703	503296	246760	F	29.68	28.22	1.46
2704	503259	246743	F	29.73	27.95	1.78
2705	503230	246776	F	-	-	-
2706	503202	246762	F	-	-	-
2801	503267	246895	F	32.17	29.67	2.5
802	503210	246828	F	31.16	29.01	2.15
803	503207	246825	F	31.06	28.39	2.67
2804	503273	246886	F	-	-	-
805	503274	246878	F	-	-	-
2807	503218	246801	F	-	-	-
2901	503251	246979	F	34.12	32.32	1.8
8001	503390	247081	F	33.83	31.03	2.8
8002	503314	247071	F	34.3	32.75	1.55
3101	503310	247159	F	33.92	32.07	1.85
3102	503377	247168	F	33.42	31.45	1.97
501	503378	246596	F	29.14	27.05	2.09
602	503355	246631	F	29.15	26.76	2.39
603	503346	246647	F	29.26	26.54	2.72
604	503301	246624	F	28.92	26.7	2.22
3701	503330	246779	F	29.69	28.5	1.19
901	503341	246902	F	32.02	29.96	2.06
902	503327	246988	F	33.86	31.64	2.22
3903	503396	246937	F	-	-	-
3904	503397	246930	F	-	-	-
905 906	503381	246934	F F	-	-	
906 907	503382 503367	246929 246933	F	-	-	-
907 908	503367	246933	F	-	-	-
908 001	503367	246929	F	- 33.48	- 31.96	- 1.52
001	503465	247090	F	33.48	31.96	1.52
.002	503492	247017	F	33.52	32.1	1.42
.003	503448	247002	F	33.35	31.93	1.38
101	503489	247094	F	33.16	31.68	1.38
102	503440	247170	F	32.97	31.79	1.18
102	503483	247166	F	32.97	31.79	0.85
.501	503484	247178	F	29.02	27.45	1.57
501 502	503405	246558	F	29.02	27.45	1.57
.502 .600	503417	246538	F	29.02	26.27	2.7
600 601	503493	246681	F	28.97	26.27	3.05
.701	503432	246687	F	29.42	26.37	0.6
701			F			
	503488	246723		29.71	27.14	2.57
703 801	503483	246701	F	29.24	26.27	2.97
801	503494	246866	F	31.03	28.78	2.25
000	503437	246811	F	29.81 33.67	28.56 30.61	1.25 3.06
	E02402	016007				1.5.1.10
1802 1901 1903	503403 503418	246997 246909	F F	32.01	29.42	2.59

Manhole Refe	erence Easting	Northing	Liquid Type
4906	503466	246918	F
4907	503478	246923	F
4908 5001	503411 503572	246939 247021	F
5002	503503	247021	F
5003	503563	247032	F
5004	503553	247036	F
5005	503537	247041	F
5006	503598	247047	F
5007 5008	503585 503576	247052 247053	F
5008 5102	503578	247053	F
5103	503565	247185	F
5105	503548	247125	F
5106	503582	247119	F
5107	503508	247170	F
5108	503526	247154	F
5109 5110	503516 503516	247159 247154	F
5110 5111	503508	247154	F
5112	503508	247156	F
5113	503508	247159	F
5601	503518	246679	F
5602	503521	246680	F
5603	503550	246617	F
5701	503582	246779	F
5702 5703	503589 503574	246740 246777	F F
5703 5801	503574	246777	F
5802	503544	246833	F
5803	503573	246848	F
5901	503595	246974	F
5902	503593	246962	F
5903	503599	246914	F
5904	503502	246930	F
6001	503644	247078	F
6002 6003	503653 503634	247044 247034	F
6003 6004	503697	247034	F
6005	503600	247038	F
6101	503601	247178	F
6102	503643	247177	F
6103	503667	247179	F
6105	503642	247139	F
6106	503627	247139	F
6107	503625	247116	F
6602 6603	503611 503615	246676 246673	F
6604	503618	246690	F
6702	503601	246715	F
6703	503620	246725	F
6704	503604	246794	F
6801	503640	246873	F
6802	503673	246849	F
6803	503698	246854	F
6804 6805	503663 503692	246843 246806	F
6902	503653	246806	F
6903	503657	246962	F
6904	503624	246914	F
6905	503644	246917	F
7001	503774	247071	F
7003	503727	247034	F
7004	503779	247045	F
7101	503768	247122	F
7102	502795	247104	F
7103 7701	503765 503723	247159 246792	F F
7801	503723	246792	F
7802	503770	246878	F
7803	503741	246849	F
7804	503703	246811	F
7805	503770	246839	F
7806	503780	246837	F
7807	503754	246823	F
7901 7902	503791	246986	F F
7902 7903	503721 503769	246926 246921	F
7903 7904	503769	246921	F
7904 7904	503792	246994	F
7905	502794	246991	F
7906	502799	246984	F
8101	502857	247142	F
8102	502827	247123	F
8501	502864	246564	F
8702	502876	246710	F
8703	502868	246720	F
8704 8705	502860	246725	F
8705 8706	502823 502889	246748 246780	F
8706 8707	502809	246760	F
8708	502800	246751	F
8709	502841	246745	F
8801	502867	246837	F
8802	502834	246889	F
	502800	246946	F
8901	500000	246919	F
	503808		
8901	503808	246986	F
8901 8902 9001	502882 502976	247024	F
8901 8901 8902 9001 9026	502882 502976 502971	247024 247068	F F
8901 8902 9001	502882 502976	247024	F

І Туре	Cover Leve	I Invert Level	Depth to Invert
	32.26 32.41	29.25 30.56	3.01 1.85
	JZ.41 -	-	-
	33.02	31.29	1.73
	33.51	32.12	1.39
	-	-	-
	-	-	-
	-	-	-
	-	-	-
	-	-	-
	32.36	30.5	1.86
	31.99	30.41	1.58
	32.7	31.27	1.43
	32.58 32.7	30.94 31.83	1.64 0.87
	-	-	-
	-	-	-
	-	-	-
	-	-	-
	-	-	-
	-	-	-
	29.25 28.92	26.23 26.23	3.02 2.69
	29.1	26.09	3.01
	29.57	27.29	2.28
	29.29	27.14	2.15
	29.59	27.65	1.94
	31.24	28.51	2.73
	30.21	27.59	2.62
	30.48	28.44	2.04
	32.92	31.69	1.23
	32.86	31.81	1.05
	32.11	30.01	2.1
	32.56	30.79	1.77
	32.29	30.49	1.8
	32.42 32.64	30.58 31.01	1.84
	32.64	31.01 31.24	1.63
	-	-	-
	31.84	30.13	1.71
	31.46	29.93	1.53
	31.17	29.61	1.56
	31.97	30.17	1.8
	32.14	30.18	1.96
	32.07	30.26	1.81
	29.76	25.79	3.97
	29.8	24.8	5
	28.91	26.86	2.05
	29.08 29.22	27.01 27.38	2.07 1.84
	29.22	27.88	1.87
	31.25	29.01	2.24
	30.54	28.71	1.83
	30.92	29.24	1.68
	30.47	28.54	1.93
	29.72	28.24	1.48
	32.91	30.93	1.98
	32.73	31.42	1.31
	32.12	29.58	2.54
	32.07	30.15	1.92
	31.41	30.01	1.4
	32.04	30.88	1.16
	31.51	30.12	1.39
	30.83 35.88	29.73 32.83	1.1 3.05
	35.88	29.45	1.36
	29.41	29.45	3.71
	31.73	30.25	1.48
	31.03	29.06	1.97
	30.49	28.63	1.86
	29.67	28.1	1.57
	31.03	25.31	5.72
	31.1	24.61	6.49
	30.02	25.7	4.32
	31.89	30.62	1.27
	32.16	30.47	1.69
	31.72	29.86	1.86
	- 31.66	- 29.4	- 2.26
	-	-	-
	-	-	-
	35.66	33.48	2.18
	35.76	33.47	2.29
	30.18	28.45	1.73
	34.74	31.27	3.47
	35.02	31.79	3.23
	35.23	32.14	3.09
	35.21	32.2	3.01
	36.99	31.9	5.09
	-	-	-
	-	-	-
	-	-	-
	36.92 36.95	32.1	4.82
	36.95	32.16 32.35	4.79
	36.77	32.35 29.75	2.06
	-	-	-
	35.32	32.29	3.03
	-	-	1.2
		-	-
	-		

Manhole Reference	Easting	Northing	Liquid Type	Cover Level	Invert Level	Depth to Inver
9100	502940	247174	F	-	-	-
9101	502954	247157	F	-	-	-
9102	502966	247139	F	-	-	-
9103	502973	247133	F	-	-	-
9104	502998	247113	F	-	-	-
9501	502968	246564	F	29.78	28.4	1.38
9502	502909	246556	F	30.34	28.63	1.71
9601	502932	246692	F	33.14	30.53	2.61
9602	502904	246640	F	32.51	29.11	3.4
9701	502932	246705	F	33.31	31.74	1.57
9702	502945	246751	F	34.5	31.85	2.65
9703	502939	246729	F	33.84	31.85	1.99
9704	502990	246784	F	-	31.96	-
9801	502950	246898	F	36.96	32.09	4.87
9802	502923	246841	F	37.36	31.99	5.37
9803	502983	246884	F	-	-	-
9804	502972	246853	F	-	-	-
9805	502957	246830	F	-	-	-
9901	502964	246948	F	36.17	32.18	3.99
9902	502921	246997	F	-	-	-
9903 9904	502920 502902	246943 246923	F	-	-	-
9905	502902	246984	F	-	-	
9906	502970	246990	F	-	-	
9911	502935	246999	F	-	-	
0051	503000	247085	S	34.94	34.31	0.63
0052	503052	247000	S	-	-	-
0053	503052	247016	S	-	-	-
0054	503069	247024	S	-	-	-
)151	503012	247125	S	34.61	33.79	0.82
0651	503014	246640	S	30.33	28.49	1.84
0652	503036	246608	S	29.73	27.86	1.87
0653	503030	246604	S	29.76	28.18	1.58
0750	503090	246749	S	-	-	-
851	503080	246817	S	-	-	-
)852	503060	246808	S	-	-	-
)853	503038	246804	S	-	-	-
)854	503014	246815	S	-	-	-
)855	503072	246820	S	-	-	-
0856	503059	246845	S	-	-	-
0857	503075	246874	S	-	-	-
)858	503011	246873	S	-	-	-
)951	503074	246904	S	-	-	-
)952	503086	246925	S	-	-	-
)953	503068	246919	S	-	-	-
)954	503063	246932	S	-	-	-
)955	503065	246975	S	-	-	-
0956	503016	246902	S	-	-	-
)957	503007	246933	S	-	-	-
0958	503059	246986	S	-	-	-
1051 1151	503129 503121	247086 247110	S S	34.81 34.76	33.87	0.94
1152		247110	S	34.78	33.93	0.83
1152	503122 503193	247106	S	34.79	33.91 32.75	0.88
1552	503163	246535	S	29.2	27.62	1.58
1651	503103	246615	S	29.59	27.906	1.684
1652	503123	246619	S	29.34	27.913	1.427
1653	503116	246634	S	29.74	27.93	1.81
1654	503131	246642	S	-	-	-
1655	503130	246676	S	-	-	-
1750	503191	246751	S	-	-	-
1751	503111	246710	S	-	-	-
851	503193	246884	S	32.83	31.59	1.24
1852	503192	246888	S	32.94	31.64	1.3
853	503189	246876	S	-	-	-
1854	503177	246889	S	-	-	-
855	503139	246847	S	-	-	-
856	503132	246875	S	-	-	-
951	503159	246986	S	34.9	33.65	1.25
952	503167	246931	S	-	-	-
2051	503229	247057	S	34.55	33.22	1.33
2151	503259	247142	S	34.19	33.29	0.9
2152	503207	247126	S	34.41	33.41	1
2153	503202	247125	S	34.47	33.43	1.04
2551	503247	246585	S	29.01	27.73	1.28
2552	503250	246580	S	29.19	27.76	1.43
2651	503272	246693	S	29.2	27.51	1.69
2652	503298	246639	S	29.06	27.33	1.73
2653	503296	246636	S	29.03	27.57	1.46
2751	503222	246796	S	30.54	29.06	1.48
2752	503288 503268	246760	S S	29.66 29.68	28.07 27.92	1.59
2753 2754	503268 503248	246751	S	29.68 29.74	27.92 27.75	1.76
2754 2755	503248 503216	246742 246764	S	∠3.14 -	27.75	1.99
2755 2851	503216 503268	246764	S	- 32.14	- 30.94	- 1.2
2852	503268	246894	S	32.14	30.94 29.79	1.2
2951	503203	246983	S	34.19	32.96	1.74
8051	503252	246983	S	34.19	32.96	0.85
8052	503324	247071	S	33.7	32.4	1.3
3151	503392	247079	S	33.92	32.4	1.1
3152	503378	247165	S	33.4	32.44	0.96
3152	503378	247165	S	29.12	32.44 27.04	2.08
3551	503386	246596	S	29.12	27.04 27.7	2.08
8652	503361	246673	S	29.16	27.7	1.40
8653	503360	246637	S	29.19	27.33	2.07
3655	503304	246620	S	28.97	27.12	1.17
3751	503326	246779	S	29.71	28.38	1.33
3951	503345	246902	S	32.01	30.71	1.3
3952	503328	246992	S	33.8	32.65	1.15
1051	503328	240991	S	33.36	32.05	0.59
			S	33.49	32.52	0.97
1052	503473	24/011	0	00.7.7	02.02	Q.Q.
4052 4053	503473 503445	247011 247004	S	33.54	32.41	1.13

 Manhole Reference
 Easting
 Northing
 Liquid Type
 Cover Level
 Invert Level
 Depth to Invert

Mannole Refe	rence Easting	Northing	Liquid Typ	e Cover Level	Invert Level	Depth to Inve
4151	503427	247168	S	33.16	32.18	0.98
1551	503412	246559	S	28.97	26.94	2.03
1651 1652	503499 503432	246691	S S	29.05 29.36	28.35 28.12	0.7
653	503432	246698 246692	S	29.36	27.97	1.24
751	503457	246778	S	29.66	28.75	0.91
752	503487	246717	S	29.61	28.45	1.16
753	503473	246712	S	29.41	28.46	0.95
754	503459	246711	S	29.48	28.3	1.18
755	503445	246700	S	29.37	28.55	0.82
756	503495	246702	S	29.71	28.39	1.32
851	503495	246868	S	31.05	29.52	1.53
951	503470	246919	S	32.28	30.51	1.77
952	503419	246909	S	31.99	30.19	1.8
954	503468	246917	S	32.25	30.03	2.22
5051	503510	247088	S	33.04	31.45	1.59
5052	503521	247020	S	33.4	32.1	1.3
i053	503593	247034	S	32.92	31.16	1.76
5054 5151	503566 503513	247013 247175	S S	33.12 32.54	31.68 30.61	1.44
5152	503572	247175	S	31.97	30.01	1.93
5153	503543	247119	S	32.73	31.03	1.7
5651	503580	246692	S	28.96	28.15	0.81
5751	503550	246755	S	29.34	28.72	0.62
5752	503531	246793	S	29.71	29.29	0.42
5753	503557	246740	S	28.98	28.26	0.72
5754	503556	246741	S	29	28.3	0.7
5755	503568	246715	S	28.97	28.23	0.74
5757	503552	246755	S	29.71	28.52	1.19
5758	503591	246742	S	29.34	27.7	1.64
5759	503582	246782	S	29.58	27.83	1.75
5760	503554	246776	S	29.6	28.39	1.21
5851	503516	246826	S	30.16	29.35	0.81
5852	503507	246843	S	30.47	29.59	0.88
5853	503503	246852	S	30.69	29.66	1.03
5854	503517	246828	S	30.15	29.46	0.69
5855	503546	246832	S	30.17	28.04	2.13
5856	503587	246853	S	30.66	28.93	1.73
5857	503525	246815	S	30.04	28.36	1.68
5858 5951	503535 503570	246874	S S	31.37 32.86	29.26 32.13	2.11 0.73
5952	503570	246965 246948	S	32.89	31.65	1.24
5953	503523	246935	S	32.76	31.27	1.49
5954	503547	246909	S	32.08	30.56	1.52
5051 5051	503653	247046	S	32.45	30.44	2.01
6151	503640	247172	S	31.46	29.23	2.23
6153	503626	247123	S	32.17	29.52	2.65
6154	503600	247111	S	32.43	30.78	1.65
6156	503642	247143	S	31.92	29.44	2.48
6651	503606	246659	S	29.24	27.44	1.8
652	503639	246691	S	-	-	-
653	503645	246684	S	29.65	27.6	2.05
654	503621	246691	S	28.88	27.51	1.37
655	503628	246680	S	29.11	27.4	1.71
656	503600	246653	S	29.01	27.48	1.53
6751	503667	246773	S	29.59	28.42	1.17
6752	503672	246722	S	29.41	28.13	1.28
6753	503603	246718	S	29.13	27.6	1.53
6754	503625	246730	S	29.31	28.28	1.03
6755	503601	246794	S	29.74	28.41	1.33
6756	503674	246750	S	29.29	28.25	1.04
851	503640	246874	S	31.26	29.51	1.75
852	503662	246843	S	30.52	28.88	1.64
853	503674	246850	S	30.57	29.14	1.43
854	503691	246803	S	29.72	28.59	1.13
3951 3952	503699 503652	246993 246981	S S	32.6 32.82	31.53 31.15	1.07
952 953	503602	246981	S	32.82	31.15	1.67
6953 6954	503622	246967	S	32.9	31.34	2.02
6954 6955	503685	246913	S	-	-	-
7051	503730	240919	S	32	30.84	- 1.16
053	503779	247034	S	31.52	30.12	1.10
7054	503776	247071	S	-	-	-
7151	503712	247185	S	30.74	29.02	1.72
152	503769	247120	S	30.82	29.75	1.07
7154	503766	247161	S	30.8	29.48	1.32
7650	503756	246620	S	-	-	-
7652	502790	246684	S	33.71	31.29	2.42
7851	503714	246892	S	31.77	30.4	1.37
7852	503714	246864	S	30.97	29.77	1.2
7853	503739	246849	S	30.53	29.09	1.44
7854	503768	246878	S	31.03	29.42	1.61
'951 '950	503741	246983	S	32.3	31.33	0.97
7952 7052	503790	246990	S	31.87	30.64	1.23
7953 7054	503769	246920	S	31.72	30.13	1.59
'954 '055	503719	246924	S	32.19	30.79	1.4
'955 151	503790	246900	S	31.59 35.5	29.68	1.91
3151 3552	502845 502820	247151 246593	S S	35.5 31.83	34.33 30.51	1.17
8552 8650	502820	246593	S	-	-	-
3650 3651	503811 502843	246672	S S	- 33.02	- 31.64	- 1.38
3651 3652	502843	246648	S	-	-	
3652 3751	502801	246634	S S	- 35.15	- 34	- 1.15
8751 8752	502862	246726	S	35.15	34 35.63	0.93
3752 3851	502875	246767	S	36.56	35.03	1.79
3853	502807	246892	S	36.94	35.28	1.79
3951	502825	246980	S	-	-	-
3951	503810	246921	S	31.76	30.05	1.71
9151	502953	247187	S	35.05	33.957	1.093
9152	502960	247175	S	34.883	34.013	0.87
153	502957	247173	S	37.97	34.07	3.9
	502932	247155	S	35.567	34.232	1.335
9154	002002	211100	-			

	erence Easting	Northing	Liquid T	ype Cover Lev		Depth to Inve
9552	502908	246543	S	30.22	29.24	0.98
9553	502929	246532	S	30.29	29	1.29
9651	502957	246649	S	31.08	29.24	1.84
9652	502985	246670	S	31.29	29.27	2.02
9653	502955	246689	S	32.3	30.58	1.72
9654	502929	246698	S	33.15	30.94	2.21
9751	502902	246710	S	34.07	31.31	2.76
9851	502935	246880	S	37.1	36.21	0.89
9852	502950	246888	S	-	-	-
9853	502980	246882	S	-	-	-
9854	502971	246855	S	-	-	-
9855	502954	246829	S	-	-	-
9856	502954	246887	S	-	-	-
9951	502920	246994	S	-	-	-
9952	502939	246987	S	-	-	-
9953	502906	246921	S S	-	-	-
9954 9958	502922 502915	246939 246995	S	-	-	-
9959	502915	246995	S	-	-	-
5555	502354	240342	0			

Manhole Reference	Northing	Liquid Type		Depth to Invert

Manhole Reference	Easting	Northing	Liquid Type	Cover Level	Invert Level	Depth to Inver

Manhole Reference	Fasting	Northing	Liquid Type	Cover Level	Invert Level	Depth to Invert
	Lasting					